the perimeter of a triangle is 54 and it's sides are in the ratio 5 ratio 6 ratio 7• find the area of the triangle
Answers
SOLUTION:-
Given:
The perimeter of a triangle is 54cm & its side are in the ratio 5:6:7.
So,
Let the number be x
⚫5x cm
⚫6x cm
⚫7x cm
We know that, perimeter of ∆;
=) side + side + side
=) 5x + 6x + 7x = 54
=) 18x = 54
=) x= 54/18
=) x= 3cm
Now,
1st side,5x= 5×3=15cm
2nd side,6x=6×3=18cm
3rd side,7x= 7×3=21cm
Using Heron's Formula:
⚫A= 15cm
⚫B= 18cm
⚫C= 21cm
Area of triangle:
Thus,
The area of triangle is 54√6 cm².
Hope it helps ☺️
Step-by-step explanation:
The perimeter of a triangle is 54cm & its side are in the ratio 5:6:7.
So,
Let the number be x
⚫5x cm
⚫6x cm
⚫7x cm
We know that, perimeter of ∆;
=) side + side + side
=) 5x + 6x + 7x = 54
=) 18x = 54
=) x= 54/18
=) x= 3cm
Now,
1st side,5x= 5×3=15cm
2nd side,6x=6×3=18cm
3rd side,7x= 7×3=21cm
Using Heron's Formula:
⚫A= 15cm
⚫B= 18cm
⚫C= 21cm
\begin{gathered}\begin{gathered}s = \frac{a + b + c}{2} \\ \\ = > \frac{15 + 18 + 21}{2} \\ \\ = > \frac{54}{2} \\ \\ = > 27cm\end{gathered} < /p > < p > \end{gathered}
s=
2
a+b+c
=>
2
15+18+21
=>
2
54
=>27cm
</p><p>
Area of triangle:
\begin{gathered}\begin{gathered}a = \sqrt{s(s - a)(s - b)(s - c)} \\ \\ = > \sqrt{27(27 - 15)(27 - 18)(27 - 21)} \\ \\ = > \sqrt{27(12)(9)(6)} \\ \\ = > \sqrt{3 \times 3 \times 3 \times 2 \times 2 \times 3 \times 3 \times 3 \times 2 \times 3} \\ \\ = > 3 \times 3 \times 3 \times 2 \sqrt{6} \\ \\ = > 54 \sqrt{6} {cm}^{2} \end{gathered}\end{gathered}
a=
s(s−a)(s−b)(s−c)
=>
27(27−15)(27−18)(27−21)
=>
27(12)(9)(6)
=>
3×3×3×2×2×3×3×3×2×3
=>3×3×3×2
6
=>54
6
cm
2
Thus,
The area of triangle is 54√6 cm².
Hope it helps ☺️