Math, asked by tharun1106, 4 months ago

The perimeter of a triangle is 60 cm and the sides are in a ratio 4:3:5. Find its area.

Answers

Answered by brainlyofficial11
125

Aɴsʀ

given :-

  • perimeter of triangle = 60cm
  • ratio of sides of triangle = 4:3:5

to find :-

  • area of triangle ?

solution :-

we have, ratio of sides of a triangle is 4:3:5

let the sides of this triangle are 4x , 3x and 5x

and we know that,

perimeter of triangle = sum of sides of triangle

➪ 60 = 4x + 3x + 5x

➪ 60 = 12x

➪ 12x = 60

➪ x = 60/12

➪ x = 5

hence, x = 5 is the common multiple of sides of this triangle,

then sides of triangle are;

  • 4 × 5 = 20cm
  • 3 × 5 = 15cm
  • 5 × 5 = 25cm

_______________________

now, find the area of triangle by heron's formula

if a,b and c are sides of a triangle then,

 \boxed{{ \bold{area=  \sqrt{s(s - a)(s - b)(s - c)}} }} \\  \\   \boxed{ \bold{s =  \frac{perimeter \: of \: triangle}{2} }} \:  \:  \:  \:

_______________________

let,

  • a = 20cm
  • b = 15cm
  • c = 25cm

here,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \tt s =  \frac{60cm}{2} } \\  \\  \implies \boxed{  { \tt s = 30cm}}

then,area of triangle,A ;

 { \tt A =  \sqrt{s(s - a)(s - b)(s - c)} } \:  \:  \:  \:  \:  \\  \\  { \tt\implies A =  \sqrt{30 (30 - 20)(30 - 15)(30 - 25)} } \\  \\  { \tt \implies A =  \sqrt{30 \times 10 \times 15 \times 5} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  { \tt \implies \: A =  \sqrt{3 \times 10 \times 10 \times 5 \times 3 \times 5} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  { \tt \implies A = 10 \times 3 \times 5} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\    \implies\boxed{  \pink{\bold{A = 150 \:  {cm}^{2} }}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

therefore, area of triangle is 150 cm²

Similar questions