Math, asked by shivanginishad777p, 7 months ago

The perimeter of a triangle is 60cm. If its sides are in the ratio 2:3:5, then its

smallest side is

a) 15 b) 12 c) 30 d)none​

Answers

Answered by Rubellite
20

Given thαt,

  • The perimeter of α triαngle is 60cm.
  • The ratio of sides are 2:3:5.

☯️ We need to find the smαllest side.

__________

To do so,

Let's αssume thαt the sides be , αnd .

According to the question,

:\implies{\sf{2a+3a+5a=60}}

:\implies{\sf{10a=60}}

:\implies{\sf{a=\dfrac{60}{10}}}

:\large\implies{\boxed{\sf{\orange{6}}}}

Hence, the sides will be —

  • 2(6) = \large{\overbrace{\sf{\red{12}}}}
  • 3(6) = \large{\sf{\red{18}}}
  • 5(6) = \large{\underbrace{\sf{\red{30}}}}

Hence, the smαllest side will be (b) 12.

And we αre done!

________________________

Answered by Anonymous
30

GiveN:

  • perimeter = 60cm

  • it's sides ratio = 2:3:5

To FinD:

  • smallest side of the triangle?

SolutioN:

\:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: :  \implies  \bf 2a + 3a + 5a  = 60

\:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: :  \implies \bf 10a = 60

\:  \:  \:   \:  \:  \:  \:  \:  \:   \:  \:  \: \:  \:  \: \:  \: \: : \implies \bf a =  \cancel{ \frac{60}{10} }

\:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \: \:  \:  \: \: \:  \: :  \implies {\boxed{\underline {\green{ \bf a =  6}}}}

The three sides are:

  { \boxed {\blue{ \bf \: 2 \times 6 = 12cm}}}

{ \boxed {\pink{ \bf \: 3 \times 6 = 18cm}}}

{ \boxed {\purple{ \bf \: 5 \times 6 = 30cm}}}

Thus , the smallest side is 12cm

\therefore {\red{ \bf The \: smallest \: side \: is \: 12cm \: (b)  }}

Similar questions