Math, asked by daiwik12, 10 months ago

The perimeter of a triangular field is 270 cm and its sides are in the ratio 25 : 17 : 12. Find its area.

Answers

Answered by VishalSharma01
48

Answer:

Step-by-step explanation:

Given :-

Perimeter = 270 cm

Ratio of sides = 25 : 17 : 12

To Find :-

Area of triangle

Formula to be used :-

Heron's formula i.e,  √s(s - a)(s - b)(s - c)

Solution :-

Let the sides be 25x , 17x and 12x.

⇒ 25x + 17x + 12x = 270

⇒ 54x = 270

⇒ x = 270/54

x = 5

1st side = 25x = 25 × 5 = 125 cm

2nd side =  17x = 17 × 5 = 85 cm

3rd side = 12x = 12 × 5 = 60 cm

Semi-perimeter, s = 270/2 = 135 cm

Now, area of triangle

Area of triangle = √s(s - a)(s - b)(s - c)

⇒ Area of triangle = √135(135 - 125)(135 - 85)(135 - 60)

⇒ Area of triangle = √135 (10) (50) (75)

⇒ Area of triangle = √5 × 9 × 3 × 5 × 2 × 25 × 2 × 3 × 25

⇒ Area of triangle = 2250 cm²

Hence, the Area of triangle is 2250 cm².

Answered by Anonymous
22

\Large{\underline{\underline{\mathfrak{\tt{\red{Question}}}}}}

The perimeter of a triangular field is 270 cm and its sides are in the ratio 25 : 17 : 12. Find its area.

\Large{\underline{\underline{\mathfrak{\tt{\red{Solution}}}}}}

\Large{\underline{\mathfrak{\tt{\orange{Given}}}}}

  • The perimeter of a triangular field is 270 cm
  • its sides are in the ratio 25 : 17 : 12

\Large{\underline{\mathfrak{\tt{\orange{Find}}}}}

  • Area of triangle

\Large{\underline{\underline{\mathfrak{\tt{\orange{Explanation}}}}}}

Using Formula

\boxed{\small{\tt{\green{\:Perimeter\:of\:triangle\:=\:Sum\:of\:all\:side}}}}

Let, Here

  • First Side be = 25x cm
  • Second Side be = 17 cm
  • Third Side be = 12 cm

Then,

==> Perimeter of triangle = (25+17+12) * x

==> 270 = 54x

==> x = 270/54

==> x = 5

\Large{\underline{\mathfrak{\tt{\orange{Hence}}}}}

  • First Side be = 25x = 25 * 5 = 125 cm
  • Second Side be = 17x = 17 * 5 = 85 cm
  • Third Side be = 12x = 12 * 5 = 60 cm

___________________________

Now, Calculate Area of Triangle

Assume that , Here ABC

where,

  • AB = 125 cm
  • BC = 85 cm
  • CA = 60 cm

By, Heron's Formula

\boxed{\small{\tt{\green{\:semi\:perimeter(S)\:=\:\dfrac{AB+BC+CA}{2}}}}}

==> S = (125+85+60)/2

==>S = 270/2

==> S = 135 cm

Now, Area will be

\boxed{\small{\tt{\green{\:Area_{triangle}\:=\:\sqrt{S(S-AB)(S-BC)(S-CA)}}}}} \\ \\ \\ \mapsto\tt{\:Area_{triangle}\:=\:\sqrt{135(135-125)(135-85)(135-60)}} \\ \\ \mapsto\tt{\:Area_{triangle}\:=\:\sqrt{135*10*50*75}} \\ \\ \mapsto\tt{\:Area_{triangle}\:=\:\sqrt{5*9*3*5*2*25*2*3*25}} \\ \\ \mapsto\tt{\:Area_{triangle}\:=\:(5*5*5*3*3*2)} \\ \\ \mapsto\bold{\tt{\red{\:Area_{triangle}\:=\:2250\:cm^2\:\:\:\:\:Ans}}}

__________________________

Similar questions