French, asked by BrainlyCadbury, 1 month ago

The perimeter of a triangular field is 540 m. and its sides are in ratio 25:17:12. Find the area of the triangle?

_R.D. Sharma

Answers

Answered by Anonymous
144

Answer:

Question :-

  • The perimeter of a triangular field is 540m and its sides are in the ratio 25:17:12.Find the area of the triangle.

Answer :-

  • Area of triangle is 9000 m^2.

Given :-

  • The perimeter of triangular field is 540m and its sides are in ratio 25:17:12.

To find :-

  • Find the Area of triangle

Solution :-

  • Here according to the given question we can verify that,

  • Perimeter =25x+17x+12x
  • 540 =54x
  • x =  \frac{540}{54}
  • x=10m.

Now ,

  • The sides of triangle
  • AB=25x=25×10=250m
  • BC=17x=17×10=170 m.
  • AC=12x=12×10=120m.

Lets ,

  • Take first Semi perimeter of triangular field =
  •  \frac{540}{2}  = 270m

By using Heron's formula we get the answer for your question.

  • The Heron's formula is,

 =  \sqrt{s(s - a)(s - b)(s - c)}

  • Now applying all the values we get,

  •    \sqrt{270(270 - 250)(270 - 170)(270 - 120)}

  •  \sqrt{270 \times 20 \times 100 \times 150}
  •  \sqrt{ {3}^{4} \times  {10}^{5}   \times 2 \times 5}  {m}^{2}

  •  =  \sqrt{( {3}^{2}  \times  {10}^{(3 {)}^{2} } }  {m}^{2}

  •  = 9 \times 1000 {m}^{2}

  • area \: of \: triangle = 9000 {m}^{2}

Used formulae:-

  • Perimeter of triangle
  • Herons formula
  • we used to get the answer.

Hope it helps u mate .

Thank you .

Answered by Theking0123
614

★ Assumption Needed:-    

Let the sides be,

  • ➾  Side a = 25x m
  • ➾  Side b = 17x m
  • ➾  Side c = 12 m

★ To Calculate:-    

  • Area of the triangle.

★ Formula Used:-    

~Perimeter of the triangle

  • \Large\boxed{\sf{Perimeter_{(\:TRIANGLE\:)}\:=\:a\:+\:b\:+\:c}}

Where,

  • a,b and c are sides of the triangle

~Semi-Perimeter

  • \Large\boxed{\sf{Semi\:-\:Perimeter\:=\:\left(\:\dfrac{a\:+\:b\:+\:c}{2}\:\right)}}

Where,

  • ➾  a = Length of side a
  • ➾  b = Length of side b
  • ➾  c = Length of side c

~Area of the triangle

  • \Large\boxed{\underline{\sf{Area\:_{(\:TRIANGLE\:)}\:=\:\sqrt{s\:(\:s\:-\:a\:)\:(\:s\:-\:b\:)\:(\:s\:-\:c\:)}} }}

Where,

  • ➾  s = semi-perimeter
  • ➾  a = 8 cm = Length of side a
  • ➾  b = 42 cm = Length of side b
  • ➾  c = 44 cm = Length of side c

★ Calculating:-      

Step1: First we will find out the sides of the triangle by substituting the values in the formula [ Perimeter of the triangle = a + b + c ]

\qquad\sf{:\implies\:Perimeter_{(\:TRIANGLE\:)}\:=\:a\:+\:b\:+\:c}

\qquad\sf{:\implies\:540\:m\:=\:25x\:+\:17x\:+\:12x}

\qquad\sf{:\implies\:540\:m\:=\:54\:x}

\qquad\sf{:\implies\:x\:=\:\dfrac{540}{54}}

\qquad\sf{:\implies\:x\:=\:10\:}

~So the sides are,

  • Side a = 25x = 25 × 10 = 250 m
  • Side b = 17x = 17 × 10 = 170 m
  • Sides c = 12x = 12 × 10 = 120m

. \:°\: .\underline{\sf{The\: sides\: are\: 250\: m\:,\: 170 \:m\:,\: 120\: m\:.}}

Step2: Now we will find out the semi-perimeter so we will substitute the values in the formula. [ Semi-perimeter = a + b + c/2 ]

\qquad\sf{:\implies\:Semi\:-\:Perimeter\:=\:\left(\:\dfrac{a\:+\:b\:+\:c}{2}\:\right)}

\qquad\sf{:\implies\:Semi\:-\:Perimeter\:=\:\left(\:\dfrac{250\:+\:170\:+\:120}{2}\:\right)}

\qquad\sf{:\implies\:Semi\:-\:Perimeter\:=\:\left(\:\dfrac{540}{2}\:\right)}

\qquad\sf{:\implies\:Semi\:-\:Perimeter\:=\:270\:m}

. \:°\: .\underline{\sf{The\: semi\:-\:perimeter\:of\:the\: triangle\:is\: 270\:m\:.}}

Step3: Now to calculate the triangle area, we will again use the formula and substitute the values. [ Area of triangle = √s ( s - a ) ( s -b ) ( s - c )]

\qquad\sf{:\implies\:Area\:_{(\:\:TRIANGLE)}\:=\:\sqrt{s\:(\:s\:-\:a\:)\:(\:s\:-\:b\:)\:(\:s\:-\:c\:)} }

\qquad\sf{:\implies\:Area\:_{(\:\:TRIANGLE)}\:=\:\sqrt{270\:(\:270\:-\:250\:)\:(\:270\:-\:170\:)\:(\:270\:-\:120\:)} }

\qquad\sf{:\implies\:Area\:_{(\:\:TRIANGLE)}\:=\:\sqrt{270\:(\:20\:)\:(\:100\:)\:(\:150\:)} }

\qquad\sf{:\implies\:Area\:_{(\:\:TRIANGLE)}\:=\:\sqrt{270\:\times\:20\:\times\:100\:\times\:150\:} }

\qquad\sf{:\implies\:Area\:_{(\:\:TRIANGLE)}\:=\:\sqrt{8,10,00,000} }

\qquad\sf{:\implies\:Area\:_{(\:\:TRIANGLE)}\:=\:9000\:m}

. \:°\: .\underline{\sf{The\: area\:of\:the\: triangle\:is\: 9000\:m^{2}\:.}}

★ Answer:-      

  • . ° . The area of the triangle is 9000 m².

Similar questions