Math, asked by ITZmejjj, 6 months ago

The perimeter of a triangular field is 540m and its sides are in the
ratio 5:12:13 .find the area of thetriangle​

Answers

Answered by Anonymous
60

Given sides of a triangular plot are in ratio 5:12:13.

Perimeter of plot is 540 m. \\ \\

We have to find, Area of triangular plot.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Let the sides of a triangular plot be 5x, 12x, and 13x.

According to the question,

we know that,

Perimeter of triangle = sum of measure's of it's all sides.

:\implies\sf 12x+5x+13x=540\\ \\

:\implies\sf 30x = 540\\ \\

:\implies\sf x = \cancel{ \dfrac{540}{30}}\\ \\

:\implies\sf x= 5\\ \\

Therefore,  \\ \\

Measure of sides of triangle is, \\ \\

5x = 5 × 20 = 25 m

12x = 12 × 20 = 60 m

13x = 13 × 20 = 65m

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━

✇ Using Heron's Formula, \\ \\

\star\;{\boxed{\sf{\pink{ \sqrt{s(s - a)(s - b)(s - c)}}}}}\\ \\

Where,

\dashrightarrow\sf s = semi - perimeter\\ \\

\dashrightarrow\sf s = \dfrac{a+b+c}{2}\\ \\

\dashrightarrow\sf s = \cancel{ \dfrac{25+60+65}{2}}\\ \\

\dashrightarrow\bf s = 75\;m\\ \\

Therefore,

\sf Here \begin{cases} & \sf{a = 25\;m}  \\ & \sf{b = 60\;m} \\ & \sf{c = 65\;m} \\ & \sf{s = 270\;m}  \end{cases}\\ \\

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━

✇ Now, Putting Values in Formula, \\ \\

:\implies\sf \sqrt{75(75-25)(75-60)(75-65)}\\ \\

:\implies\sf \sqrt{75 \times 50 \times 15 \times 10}\\ \\

:\implies\sf \sqrt{750}\\ \\

:\implies{\boxed{\frak{\purple{ \sqrt{750}\;m^2}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Thus,\;Area\;of\;given\; triangle\;is\; \bf{ \sqrt{750}\;m^2}.}}}

Answered by Anonymous
48

\huge\underline{\bf{Given}}

  • The perimeter of a triangular field is 540m.
  • Its sides are in the ratio 5:12:13.

\huge\underline{\bf{To\: Find}}

  • The area of triangle.

\huge\underline{\bf{Concept}}

  • In this question, we will find the area of triangle by using heron's formula.
  • For this we have to find the sides of the triangle.

\huge\underline{\bf{Solution}}

  • Let the ratio be x.

★ Then, the sides will be

\tt\longrightarrow{a = 5x}

\tt\longrightarrow{b = 12x}

\tt\longrightarrow{c = 13x}

★ We know that

\small{\boxed{\tt{\bigstar{Perimeter\: of\: triangle = Sum\: of\: all\: the\: measures\: of\: its\: sides{\bigstar}}}}}

\tt\longmapsto{Perimeter = 540}

\tt\longmapsto{5x + 12x + 13x = 540}

\tt\longmapsto{30x = 540}

\tt\longmapsto{x = \dfrac{540}{30}}

\tt\longmapsto{x = 18}

★ Therefore, measures of three sides are

→ a = 5 × 18 = 90m

→ b = 12 × 18 = 216m

→ c = 13 × 18 = 234m

Finding semi - perimeter (s)

 \boxed{\tt{\bigstar{Semi - perimeter = \dfrac{a + b + c}{2}{\bigstar}}}}

\sf\implies{s = \dfrac{90 + 216 + 234}{2}}

\sf\implies{s = \cancel{\dfrac{540}{2}}}

\sf\implies{s = 270}

Heron's Formula

 \boxed{\tt{\bigstar{Area = \sqrt{s(s - a) (s - b) (s - c)}{\bigstar}}}}

Here,

  • s = 270
  • a = 90
  • b = 216
  • c = 234

Putting the values

\small\tt:\implies\: \: \: \: \: \: \: \: {Area = \sqrt{270(270 - 90) (270 - 216) (270 - 234)}}

\tt:\implies\: \: \: \: \: \: \: \: {Area = \sqrt{270(180) (54) (36)}}

\tt:\implies\: \: \: \: \: \: \: \: {Area = \sqrt{48,600 \times 54 \times 36}}

\tt:\implies\: \: \: \: \: \: \: \: {Area = \sqrt{48,600 \times 1,944}}

\tt:\implies\: \: \: \: \: \: \: \: {Area = \sqrt{94,478,400}}

\tt:\implies\: \: \: \: \: \: \: \: {Area = 9,720}

Hence, the area of the triangular field is 9,720 m².

━━━━━━━━━━━━━━━━━━━━━━

Similar questions