Math, asked by igstrm, 4 months ago

The perimeter of a triangular field is 540m and its sides are in a ratio 25 : 17 : 12. Find the area of the triangle. Also, find the cost of cultivating the field at Rs. 24.60 per 100m².​

Answers

Answered by wtfhrshu
67

\frak{Given}\begin{cases}\sf{Perimeter\;of\;the\;field}=\bf{540\;m}\\\sf{Ratio\;of\;the\;sides}=\bf{25:17:12}\end{cases}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Need to find: The area of the triangle and the cost of cultivating the field at Rs. 24.60 per 100m².

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⧠ Let the sides be 25x, 17x, 12x.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\bigstar\;\boldsymbol{\underline{According\;to\;the\;question,}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{25x+17x+12x=540}\\\\\sf{=54x=540}\\\\\sf{=x=\dfrac{\cancel{540}}{\cancel{54}}}\\\\\sf{=x=10}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

∴ The sides are,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • (25 × 10)m = 250m
  • (17 × 10)m = 170m
  • (12 × 10)m = 120m

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf\therefore\:{s=\dfrac{sum\;of\;sides}{2}}\\\\\sf{=\dfrac{\cancel{540}}{\cancel{\:2\:}}}\\\\\sf{=270\:m}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Now, area of the triangular field,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bigstar\:{\pink{\underline{\boxed{\sf{\sqrt{s(s-a)(s-b)(s-c)}}}}}}\\\\\sf{=\sqrt{270(270-250)(270-170)(270-120)}}\\\\\sf{=\sqrt{270×20×100×150}}\\\\\sf{=\sqrt{3×3×3×10×2×10×2×5×10×3×5×10}}\\\\\sf{=\sqrt{2×3×3×5×10×10\;m^2}}\\\\{\purple{\underline{\boxed{\frak{=9000\;m^2}}}}}{\:\bigstar}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

Cost of cultivating the field at Rs. 24.60 per 100m²,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{=Rs.\;\cfrac{9000×24.60}{100}}\\\\\\\sf{=Rs.\;\cfrac{9000×2460}{100×100}}\\\\\\={\blue{\underline{\boxed{\sf{Rs.\;{\frak{2214}}}}}}}{\:\bigstar}

Answered by anshu24497
14

 \large \mathfrak{ \purple{ \underline{Given:}}}

\sf{ \star{ \: {Perimeter\;of\;a \: triangular \: field}={540\;m}}}

\sf{ \star{ \: Ratio\;of\;the\;sides}={25:17:12}}

 \large \mathfrak{ \purple { \underline{To \:  Find : }}}

{\star} The area of the triangle.

{\star} The cost of cultivating the field at Rs. 24.60 per 100m².

 { \sf{☯ \: Let  \: the  \: sides  \: be  \: 25x, 17x, 12x.}}

 \large \mathfrak{ \purple{\underline{According \: to \: the \: question,}}}

 \begin{gathered}\sf{ \to{25x+17x+12x=540}}\\\\\sf{ \to54x=540}\\\\\sf{ \to \: x=\dfrac{\cancel{540}}{\cancel{54}}}\\\\\sf{ \to \: { \red{x=10}}}\end{gathered}

{ \sf{∴ The \:  sides \:  are, }} \\ { \sf{༐ \:  \: (25 × 10)m = 250m }}\\{ \sf{ ༐ \:  \: (17 × 10)m = 170m}} \\{ \sf{༐ \:  \:  (12 × 10)m = 120m}}

\begin{gathered}\sf\therefore\:{s=\dfrac{sum\;of\;sides}{2}}\\\\\sf{=\dfrac{\cancel{540}}{\cancel{\:2\:}}}\\\\\sf{ \red{=270\:m}}\end{gathered}

 \large \mathfrak{ \purple{ \underline{ Let's \: find \: the \:  area \:  of \:  the \:  triangular  \: field,}}}

\begin{gathered}{\green{\boxed{\sf{\sqrt{s(s-a)(s-b)(s-c)}}}}}\\\\\sf{=\sqrt{270(270-250)(270-170)(270-120)}}\\\\\sf{=\sqrt{270×20×100×150}}\\\\\sf{=\sqrt{3×3×3×10×2×10×2×5×10×3×5×10}}\\\\\sf{=\sqrt{2×3×3×5×10×10\;m^2}}\\\ \\  \red{\boxed{\frak{=9000\;m^2}}}\end{gathered}

 \large \mathfrak{ \purple{ \underline{Let's \: find \: the \: cost  \: of  \: cultivating \:  the \:  field \:  at  \: Rs. 24.60 \:  per \:  100m²,}}}

\begin{gathered}\sf{ \to \: Rs.\;\cfrac{9000×24.60}{100}}\\\\\\\sf{ \to \: Rs.\;\cfrac{9000×2460}{100×100}}\\\\\\ \to{\red{ \boxed{\sf{Rs.\;{\frak{2214}}}}}}\end{gathered}

Hᴇɴᴄᴇ, ᴛʜᴇ ᴀʀᴇᴀ ᴏғ ᴛʜᴇ ᴛʀɪᴀɴɢᴜʟᴀʀ ғɪᴇʟᴅ ɪs 9000 ᴍ² ᴀɴᴅ ᴛʜᴇ ᴄᴏsᴛ ᴏғ ᴄᴜʟᴛɪᴠᴀᴛɪɴɢ ᴛʜᴇ ғɪᴇʟᴅ ᴀᴛ Rs. 24.60 ᴘᴇʀ 100ᴍ² ɪs Rs. 2214.

Similar questions