Math, asked by harshjain2356, 2 months ago

The perimeter of a triangular garden is 900 cm and its sides are in the ratio 3 : 5 :4 . Using heron's formula , the area of the triangular garden is​

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given that,

Sides of a triangular garden are in the ratio 3 : 5 : 4.

Let assume that the sides of triangular garden be taken as a, b and c.

So, a : b : c = 3 : 5 : 4

Let assume that

\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\: Sides \: of \: garden \: be \: -\begin{cases} &\sf{a = 3x} \\ &\sf{b = 5x}\\ &\sf{c = 4x} \end{cases}\end{gathered}\end{gathered}

Now, it is given that

Perimeter of triangular garden = 900 cm

So,

\rm :\longmapsto\:3x + 5x + 4x = 900

\rm :\longmapsto\:12x = 900

\rm :\longmapsto\:x = \dfrac{900}{12}  = 75

Hence,

\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\: Sides \: of \: garden \: are \: -\begin{cases} &\sf{a = 3x = 225 \: cm} \\ &\sf{b = 5x = 375 \: cm}\\ &\sf{c = 4x = 300 \: cm} \end{cases}\end{gathered}\end{gathered}

Now,

We know,

\rm :\longmapsto\:\underline{\boxed{\sf Semi \ perimeter \: (s) \: =\dfrac{Perimeter}{2}}}

\rm :\implies\:s = \dfrac{900}{2}  = 450 \: cm

Now, We know, Area of triangle using Heron's Formula is given by

\underline{\boxed{\sf Area \ of \ triangle=\sqrt{s(s-a)(s-b)(s-c)} }}

So, on substituting the values of s, a, b and c, we get

\rm :\longmapsto\:Area =  \sqrt{450(450 - 225)(450 - 375)(450 - 300)}

\rm \:  =  \:  \:  \sqrt{450 \times 225 \times 75 \times 150}

\rm \:  =  \:  \:  \sqrt{75 \times 3 \times 2 \times 75 \times 3 \times 75 \times 75 \times 2}

\rm \:  =  \:  \: 75 \times 75 \times 3 \times 2

\rm \:  =  \:  \: 150 \times 225

\rm \:  =  \:  \: 33750 \:  {cm}^{2}

Hence,

  \:  \:  \:  \: \underbrace{ \boxed{ \bf{ \: Area_{(triangular  \: garden)} \:  =  \: 33750 \:  {cm}^{2}}}}

Similar questions