Math, asked by 2039sanchali, 1 month ago

The perimeter of a triangular ground is 900 & it's sides are in the ratio 3:5:6. Using Heron's formula find the area of the ground. ​

Answers

Answered by AnswerFactory
4

Answer:

33750 m².

Step-by-step explanation:

Let sides of the triangle are 3X , 5X and 4X.

  • Perimeter of triangle = 900 m
  • Sum of all three sides = 900 m

  • 3X + 5X + 4X = 900
  • 12X = 900
  • X = (900/12) m
  • X = 75 m

Therefore,

  • 3X = 3 × 75 = 225 m
  • 5X = 5 × 75 = 375 m

And,

  • 4X = 4 × 75 = 300
  • Sides of the triangle are 225 m , 375 m and 300 m.

Let,

  • A = 225 m
  • B = 375 m

And,

  • C = 300 m

Semi perimeter ( S ) = 1/2 × ( A + B + C )

  • => 1/2 × ( 225 + 375 + 300 )
  • => 1/2 × ( 900 )
  • => 450 m

( S - A ) = 450 - 225 = 225 m

( S - B ) = 450 - 375 = 75 m

And,

( S - C ) = 450 - 300 = 150 m

Therefore,

Area of triangle = ✓S ( S - A ) ( S - B ) ( S - C )

  • => ✓450 × 225 × 75 × 150
  • => ✓1139062500
  • => 33750 m².

Hope it Help's You

Drop some Thanks &

Mark as Brainliest

Attachments:
Answered by Anonymous
6

Step-by-step explanation:

\sf \large \green{ \frak{Correct \: Question:- }}

  • The perimeter of a triangular ground is 900 cm & it's sides are in the ratio 4:5:6. Using Heron's formula. Find the area of the ground.

\sf  \large\green{ \frak{Given:- } }

  • The perimeter of a triangular ground is 900 cm and it's sides are in the ratio 3:5:6.

\sf \large \blue{ \frak{To \: Find :  - }}

  • The area of the ground.

\sf \green {\large{ \frak{Solution:-}}}

✇ Let us assume that the three sides of the be 4x,5x and 6x

\sf \clubs \: As \: we \: know \: that -

\mapsto  \boxed{  \color{violet} \bf\bigstar \: Perimeter \: of   \:  \triangle = Sum \: of \: all \: sides}  \\

So,

ACQ,

\therefore \: \tt 4x + 5x + 6x = 900 \\ ☞ \tt \: 15x = 900 \\ ☞ \tt \: x =  \cancel \frac{900}{15}  \\ ☞\tt  \large  \ \pink{\:  \boxed{ \frak{x = 60}}}

So,

➳ \sf \: First \: side = 4x \\  = \sf \: 4 \times 60 \\  =  \bf \: 240 \: m \\  \\ \sf ➳ \:  Second \: side = 5x \\  =  \sf \: 5 \times 60 \\  =  \bf \: 300 \: m \\  \\ ➳  \sf \: Third \: side = 6x \\  = \sf 6 \times 60 \\  \bf \:  =  \: 360 \: m

Now to find Area,

\mapsto \color{violet} \boxed{ \bf \bigstar \: Area \: of \: a \:  \triangle =  \sqrt{s(s - a)(s - b)(s - c}}  \\

So,

\sf \: s =  \frac{a + b + c}{2}   \\ \\ ➟ \sf \: s =  \frac{240 + 300 + 360}{2}  \\ \\   \sf \: ➟ \: s =  \frac{900}{2}  \\ \\    \bf \:➟ \:   \red{s =  450}

\sf \: Area _{(Triagle)}  =  \sqrt{s(s - a)(s - b)(s - c)}   \\  \\ \sf Area _{(Triagle)} =  \sqrt{450(450 - 240)(450 - 300)(450 - 360)}  \\  \\   \sf Area _{(Triagle)} =  \sqrt{450 \times210  \times 150 \times 90}  \\   \\ \sf \: Area _{(Triagle)} =  \sqrt{1275750000}  \\  \\  \color{indigo}\bf \boxed{  \Large{ \frak{Area _{(Triagle)} = 35717.64 cm²(approx.}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions