Math, asked by angeleggy2006, 4 months ago

the perimeter of an equaleteral triangle is 60 cm .the area will be

Answers

Answered by TEJASWEE148
0

Answer:

==========================================

The answer is 100\sqrt{3}cm^{2}

==========================================

Step-by-step explanation:

==========================================

Given ,

perimeter =60 cm

semi perimeter =  60 / 2  = 30 cm.

Therefore the length of each side.

a+a+a=60

⇒3a=60

⇒a=   60   / 3

⇒a=20

∴ Area =   \sqrt{s(s-a)(s-b)(s-c)}

⇒ Area =   \sqrt{30(30-20)(30-20)(30-20)\\}

​⇒ Area =  \sqrt{30*10*10*10}

​⇒ Area =   \sqrt{ 3*10*10*10*10}

​⇒ Area =10×10\sqrt{3}

​⇒ Area = 100\sqrt{3} cm^{2}

 ∴ so, the answer is 100\sqrt{3}cm^{2}

==========================================

Hope my answer helps...  

Please mark it as the brainliest...

Answered by kiranjyothsnaganji
1

Answer:

Check out below for answer!

Step-by-step explanation:

Given  perimeter = 60 cm

Semi perimeter = \frac{60}{2}

                          =30 cm.

Therefore the length of each side =

a+a+a=60

⇒3a=60

⇒a =  \frac{60}{3} (transposed)

⇒a=20

Hence, each side = 20cm

Area of Triangle = \sqrt{s(s-a)(s-b)(s-c)}

(s = Semi Perimeter

a = 1st side

b = 2nd side

c = 3rd side)

= \sqrt{30(30-20)(30-20)(30-20)}

= \sqrt{30*10*10*10}

= \sqrt{3*10*10*10*10}

= 10 × 10\sqrt{3}

= 100\sqrt{3} cm^{2}

Therefore,

      The area = 100\sqrt{3}  cm^{2}

Hope this helped you! Mark me as the Brainliest! :)

Similar questions