Math, asked by ranga60, 1 year ago

the perimeter of an equilateral triangle 15√3 find it's area​

Answers

Answered by mathsdude85
1

perimeter = 3a

3a \:  \:  =  \:  \: 15 \sqrt{3}  \\  \\ a \:  \:  =  \: 5 \sqrt{3}  \\  \\ area \:  =  \:  \frac{ \sqrt{3} }{4} a {}^{2}  \\  \\  =  \frac{ \sqrt{3} }{4}  \times 5 \sqrt{3}  \times 5 \sqrt{3}   \\   \\  =  \frac{75 \sqrt{3} }{4}


ranga60: thank u
Answered by Vegota
0

Answer:

Perimeter = 15\sqrt{3}cm

3a =  15\sqrt{3}

Therefore, a = \frac{15\sqrt{3}}{3}

5\sqrt{3}cm

Area=\frac{\sqrt{3}}{4}a^{2}\\\implies \frac{\sqrt{3}}{4}*75\\\implies \sqrt{3}*18.75\\18.75*1.73\\32.437cm^{2}

plzz mark it as the brainliest one


mathsdude85: wrong
Vegota: i had done it right
Similar questions