Math, asked by Biplobdas0950, 9 months ago

The perimeter of an equilateral triangle is 126 cm . Find the area of incircle of the traingle

Answers

Answered by Anonymous
16

\large\underline{\underline{Question:}}

The perimeter of an equilateral triangle is 126 cm . Find the area of incircle of the traingle.

\large\underline{\underline{To\:Find:}}

\underline{Area\:of\:the\:incircle}

\large\underline{\underline{We\:Know:}}

  • Perimeter of an equilateral triangle is :

 perimeter = length × 3

\therefore length = \dfrac{perimeter}{3}

  • Area of a circle :

Area = πr^{2}

  • Pythagoras theorem:

a^{2} = b^{2} + c^{2}

\large\underline{\underline{Concept:}}

\therefore Radius\:of\:a\:circle = </p><p>\dfrac{Height}{3} of\:a\:triangle

\large\underline{\underline{Given:}}

  • Perimeter of the triangle = 126cm.

\large\underline{\underline{Solution:}}

First we have to find the side of the equilateral triangle.i.e.

length = \dfrac{126}{3}cm

length = 42cm

Hence ,the sides formed as:

  • Hypotenuse = 42 cm
  • base = \dfrac{42}{2}cm = 21cm
  • Let the height be x cm.

By Pythagoras theorem :

{\boxed{a^{2} = b^{2} + c^{2}}}

Where;

  • a = hypotenuse
  • b = base
  • c = height.

Using the Pythagoras theorem ,we can find the height of the triangle.i.e.

{\boxed{42^{2} = 21^{2} + x^{2}}}

\Rightarrow 42^{2} - 21^{2} = x^{2}

\Rightarrow \sqrt{42^{2} - 21^{2}} = x

\Rightarrow \sqrt{42^{2} - 21^{2}} = x

\Rightarrow 21\sqrt{3} = x

\therefore Height = 21\sqrt{3}cm

______________________________________

we know that,

Radius\:of\:a\:circle = </p><p>\dfrac{Height}{3} of\:a\:triangle

Radius\:of\:a\:circle =</p><p>\dfrac{21\sqrt{3}}{3}

{\boxed{\therefore Radius = \dfrac{21\sqrt{3}cm}{3}}}

______________________________________

Area of the Circle = Area = πr^{2}

π = \dfrac{22}{7}

\Rightarrow Area =  \dfrac{22}{7} ×  \bigg(\dfrac{21\sqrt{3}}{3}\bigg)^{2}

\Rightarrow Area =  \dfrac{22}{7} × \dfrac{1323}{9}

\Rightarrow Area =  22 × \dfrac{189}{9}

\Rightarrow Area =  462cm^{2}.

{\boxed{\therefore Area =  462cm^{2}}}

Similar questions