Math, asked by fflmontyzx11, 7 days ago

The perimeter of an equilateral triangle is 36cm. Calculate its area.

Answers

Answered by chandan454380
0

Answer:

Area of a equilateral triangle is 36\sqrt{3} (cm)^2

Step-by-step explanation:

The perimeter of an equilateral triangle is 36 cm

we know that,

The perimeter of an equilateral triangle =3(side)

                        3(side)=36 cm\\ \\ side=12 cm

Area of a equilateral triangle=

                                          \frac{\sqrt{3} }{4} (side)^2\\ \\ =\frac{\sqrt{3} }{4}(12)^2\\ \\ =\frac{\sqrt{3} }{4}(144)=36\sqrt{3}

Answered by mahakulkarpooja615
2

Answer:

∴  Area of an equilateral triangle is 62.35 cm^{2}.  

Step-by-step explanation:

  • In context to question asked,
  • The perimeter of an equilateral triangle is 36 cm.
  • We have to find the area of the triangle.
  • We know that, equilateral triangle has all the three sides equal in length.
  • Let, x be the length of side of equilateral triangle.
  • Perimeter of triangle is the sum of all sides of a triangle.
  • The formula for perimeter of equilateral triangle having side x is given by,

        x+x+x=36

              ∴ 3x=36

               ∴ x=\frac{36}{3}

               ∴ x=12 cm

  • Now, the formula for area of equilateral triangle is given by,

        Area of an equilateral triangle = \frac{\sqrt{3} }{4} *a^{2}

                                          = \frac{\sqrt{3} }{4} *12^{2}

                                          = \frac{\sqrt{3}}{4} *144

                                          = \sqrt{3} *36

                                          = 62.35 cm^{2}

  • ∴  Area of an equilateral triangle is 62.35 cm^{2}.  
Similar questions