Accountancy, asked by oggarvinod32, 11 months ago

The perimeter of an equilateral triangle is 60 cm, then its area is​

Answers

Answered by Anonymous
109

Explanation:

We have given that,

Perimeter = 60 cm

So, Semi Perimeter = \dfrac{60}{2} = 30 cm

Hence,the Length of each side will be :]

 \\ \sf a + a + a = 60  \\  \\

\\ \sf 3 a = 60  \\  \\

\\ \sf a  =  \dfrac{60}{3}  \\  \\

\purple{\sf a = 20 \: cm} \\

Now, we will find the area of equilateral triangle by given below formula :]

\bigstar\:\:\boxed{\underline{\underline  {\sf  Area = \sqrt{s(s - a)(s - b)(s - c)}}}} \:  \: \bigstar \\

Now, putting the given values in above formula we get :

: \implies\sf  Area = \sqrt{30(30 - 20)(30 - 20)(30- 20)} \\  \\

: \implies\sf  Area = \sqrt{30 \times 10 \times 10 \times 10} \\  \\

: \implies\sf  Area = \sqrt{3 \times 10 \times 10 \times 10 \times 10} \\  \\

: \implies\sf  Area = 10 \times 10 \sqrt{3}\\  \\

: \implies \underline{  \boxed{\sf  Area = 100 \sqrt{3} \: cm^{2} }} \\  \\

Answered by Berseria
53

Question :

To find area of a equilateral Triangle.

Solution :

Given ::

  • Perimeter of triangle = 60 cm

Perimeter of a equileteral triangle is by adding all sides of triangle.

Let , side be a

➝\sf \: a + a + a \:  = 60 \\  \\ ➝ \: \sf \: 3a \:  = 60 \\  \\ ➝\sf \: a =  \frac{60}{3}  \\  \\ ➝\sf \: a \:  = 20

Length of sides of triangle is 20 cm.

To find area of equilateral Triangle ::

{\underline{\boxed{\bf{area \: of  \: Triangle \: =  \sqrt{s(s - a)(s - b)(s - c)}  }}}}

  • a , b , c = sides of triangle

  • s = semiperimetre

  • Semi perimeter is the half of perimeter

\sf \bullet \:  \:  semi \: Perimeter \:  =  \frac{60}{ 2}   \\  \\ \sf➝ \: 30

Area :

\sf \: ➝ \:  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\ \sf \: ➝  \: \sqrt{30(30 - 20)(30 - 20)(30 - 20)}  \\  \\ ➝ \:  \sqrt{30 \times 10 \times 10 \times 10}  \\  \\ </p><p>➝\sf \sqrt{3 \times 10 \times 10 \times 10 \times 10} \\ \\ \sf \: ➝10 \times 10 \sqrt{3}  \\  \\ \bf \: ➝100 \sqrt{3}

Area of Triangle = 100√3 cm²

Similar questions