Math, asked by janakiram18, 10 months ago

The perimeter of an equilateral triangle is 60 M find its area or construct an angle of 30°.​

Answers

Answered by Anonymous
40

\huge{\underline{\underline{\red{\mathfrak{Answer :}}}}}

  • Perimeter = 60 m
  • Sides of Equilateral Triangle are equal

So,

\large {\boxed{\sf{Perimeter \: = \: Sum \: of \: Sides}}}

\implies {\sf{60 \: = \: Side \: + \: Side \: + \: Side}}

\implies {\sf{60 \: = \: 3 \: \times \: Side}}

\implies {\sf{Side \: = \: \dfrac{\cancel{60}}{\cancel{3}}}}

\implies {\sf{Side \: = \: 20 \: m}}

\rm{\therefore \: Side \: is \: of \: 20 \: m}

\rule{200}{1}

And formula for Area is

\large {\boxed{\sf{Area \: = \: \dfrac{\sqrt{3}}{4} \: Side^2}}}

\implies {\sf{Area \: = \: \dfrac{\sqrt{3}}{4} \: (20)^2}}

\implies {\sf{Area \: = \: \dfrac{\sqrt{3}}{\cancel{4}} \: \cancel{400}}}

\implies {\sf{Area \: = \: 100 \sqrt{3}}}

\leadsto {\boxed{\sf{Area \: = \: 100 \sqrt{3} \: m^2}}}

Answered by mddilshad11ab
21

◦•●◉✿ SOLUTION✿◉●•◦

✿ GIVEN✿

•The perimeter of an equilateral ∆=60m

☀ FIND:-The area of Triangle

⟶(✱° PERIMETER=Sum of all sides °✱)

⟶perimeter = 3 \times side \\ ⟶60 = 3 \times side \\ ⟶side = 20m

Hence:-

☀ The Area of equilateral triangle

⟶ \frac{ \sqrt{3} }{4}  \times  {20}^{2}  \\  \\ ⟶ \frac{ \sqrt{3} }{4}  \times 20 \times 20 \\  \\ ⟶100 \sqrt{3}  {m}^{2}

Similar questions