Math, asked by Veerthecool, 9 hours ago

The perimeter of an equilateral triangle is 60cm2
. What is its area

Answers

Answered by YourHelperAdi
3

To Find :

The area of an equilateral triangle

Given :

  • Perimeter of triangle = 60 cm
  • Area = ???

Formula to be applied:

 \tt{ \bull \: area \: of \: equilateral  \:  \triangle =  \frac{ \sqrt{3} }{4} {a}^{2}  }

 \tt{where \: ' a' \: is \: te \: side \: of \: \triangle}

 \tt{ \bull \: side \: of \: equilateral \triangle =  \frac{perimeter}{3} }

Solution :

Given, Perimeter of triangle = 60 cm

so, side = Perimeter/3

 \implies \tt{side =  \frac{60}{3} }

 \tt{ \implies  \: side = 20 \: cm}

so, side of the triangle = 20 cm

hence, area of the triangle :

 \tt{area =  \frac{ \sqrt{3} }{4}  \times  {a}^{2} }

 \tt{ \implies \: area =  \frac{ \sqrt{3} }{4}  \times  {20}^{2} }

 \tt{ \implies \: area =  \frac{ \sqrt{3} }{ \cancel{ 4}}  \times  \cancel{400}}

 \red { \underline { \boxed{ \tt{area = 100 \sqrt{3} \: c {m}^{2} }}}}

hence , area of triangle = 1003 cm²

Similar questions