Math, asked by Anonymous, 3 months ago

the perimeter of an equilateral triangle is 60m what will be its area?
❌No spam❌​

Answers

Answered by suraj5070
525

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt The\: perimeter\: of\: an \:equilateral\: triangle\: is \:60\:m \\\tt what\: will \:be\: its\: area?

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \bf Perimeter \:of \:the \:equilateral \:triangle(P) = 60\:m

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \bf Area\:of \:the \:equilateral \:triangle(A)

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 {\pink {\underline {\bf {\pmb {Side\:of \:the \:equilateral \:triangle(a)}}}}}

 {\blue {\boxed {\boxed {\boxed {\green {\pmb {P=3a}}}}}}}

  •  \sf P=perimeter \:of \:the \:equilateral \:triangle
  •  \sf a=side \:of \:the \:equilateral \:triangle

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf \implies 60=3a

 \bf \implies a=\dfrac{60}{3}

 \bf \implies a=\dfrac{\cancel{60}}{\cancel{3}}

 \implies {\blue {\boxed {\boxed {\purple {\sf a=20\:m}}}}}

—————————————————————————————

 {\pink {\underline {\bf {\pmb {Semiperimeter \:of \:the \:equilateral \:triangle(S)}}}}}

 {\blue {\boxed {\boxed {\boxed {\green {\pmb {S=\dfrac{P}{2}}}}}}}}

  •  \sf S=semiperimeter \:of \:the \:equilateral \:triangle
  •  \sf P=perimeter \:of \:the \:equilateral \:triangle

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf \implies S=\dfrac{60}{2}

 \bf \implies S=\dfrac{\cancel{60}}{\cancel{2}}

 \implies {\blue {\boxed {\boxed {\purple {\sf S=30\:m}}}}}

—————————————————————————————

 {\pink {\underline {\bf {\pmb {Area \:of \:the \:equilateral \:triangle(A)}}}}}

{\orange{\sf {In \:equilateral \:triangle \:all\: sides \:are \:equal}}}

 \longrightarrow {\boxed {\sf a=b=c=20}}

 {\blue {\boxed {\boxed {\boxed {\green {\pmb {A=\sqrt{S\Big(S-a\Big)\Big(S-b\Big)\Big(S-c\Big)}}}}}}}}

  •  \sf S=semiperimeter \:of \:the \:equilateral \:triangle
  •  \sf A=area\:of \:the \:equilateral \:triangle
  •  \sf a=side \:of \:the \:equilateral \:triangle

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf \implies A=\sqrt{30\Big(30-20\Big)\Big(30-20\Big)\Big(30-20\Big)}

 \bf \implies A=\sqrt{30\Big(10\Big)\Big(10\Big)\Big(10\Big)}

 \bf \implies A=\sqrt{30\times 10\times 10\times 10}

 \bf \implies A=\sqrt{30000}

 \bf \implies A=\sqrt{10000\times 3}

 \implies {\blue {\boxed {\boxed {\purple {\mathfrak {A=100\sqrt{3}\:{m}^{2}}}}}}}

 {\underbrace {\red {\overline {\red {\underline {\red {\sf {\pmb {{\therefore} The\:area \:of \:the \:equilateral \:triangle \:is\:100\sqrt{3}\:{m}^{2}}}}}}}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

___________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \sf Area\:of \:triangle = \dfrac{1}{2}bh

 \sf Perimeter \:of \:triangle =a+b+c

Answered by independentgirl42
1

Answer:

Correct option is

B

100

3

m

2

Perimeter of equilateral triangle =3×side

60=3×sides

Side=20 cm

Area of equilateral triangle =

4

3

×(side)

2

=

4

3

×20×20

=100

3

cm

2

Similar questions
Math, 3 months ago