Math, asked by stark26, 1 year ago

the perimeter of an equilateral triangle us equal to perimeter of square the diagonal to the square is 9√2cm . find the area of equilateral triangle.

Answers

Answered by shashankavsthi
3
Diagonal=9√2cm

sides \: of \: square \: are \: equal \: and \: forming \: right \: angle \: triangle \: when \: diagonal \: form \\ so \\ here \: we \: let \: side \: be \: x \\ and \: apply \: pythagoros \: theoram \\  \\  \:  {x}^{2}  +  {x}^{2}  =  {(9 \sqrt{2} )}^{2}  \\ 2 {x}^{2}  = 162 \\  {x}^{2}  = 81 \\ x =  \sqrt{81}  \\ x = 9 \\  \\ side \: of \: sqare \: is \: 9cm
perimeter \: of \: triangle \:  = perimetr \: of \: square \\  \\ 3y = 4x..y \: is \: side \: of \: triangle \\  \\ 3y = 36 \\ y = 12
now \: area \: of \: equilateral \: triangle \\  \frac{ \sqrt{3} }{4}  {y}^{2}  \\   \frac{ \sqrt{3} }{4}  {12}^{2}  \\   \sqrt{3}  \:  \: 36
Area of triangle will be 36√3
Similar questions