The perimeter of an icoceles triangle is 42 cm and its base is (3/2)times each of the equal sides .find the length of each side of the triangle, area of the triangle and the hieght of the triangle
Answers
Let the side of the isosceles triangle be x
GIVEN
3/2 x +x +x=42cm
3x/2 + 2x =42
(3x+4x)/2=42
3x+4x=84
7x=84
x=12cm
side=12cm base=18cm
The height(altitude) of an isos. trangle divides it into two rt trangles
in a rt.trangle, base²+heigrt²=hypotenuse²
thus, 9²+h²=12²
h=√12²-9²
=√144-81 =√63 =3√7cm
area =1/2 x base x hieght
=1/2 x 18 x3√7
27√7cm²
Answer:
- Perimeter = 42 cm.
- The triangle given is an isosceles triangle.
- The base is 3/2 times of the other two equal sides
Find –
- All the sides.
- Area.
- Height.
Solution–
Perimeter given is 42 cm.
Hence, x + x + 3/2 x = 42
2x + 3/2 x = 42
(4x + 3x)/2 = 42
7x/2 = 42
7x = 82
x = 82/7
x = 12.
Hence, Each equal side = 12 cm.
And base = 3/2 * 12 = 3*6 = 18 cm.
Finding the area using heron's formula -
s = (12 + 12 + 18)/2 = 21 cm.
Area = √(s(s-a)(s-b)(s-c))
Area = √(21(21-12)(21-12)(21-18))
Area = √(21(9)(9)(3))
Area = √(7*(3*3)*(3*3)*(3*3))
Area = 3*3*3√(7)
Area = 27√7 cm²
Finding the height -
½ * B * H = 27√7
½ * 18 * H = 27√7
H = (27√7 * 2)/18
H = 27√7/9
Height = 3√7 cm
Conclusion -
- Height = 3√7 cm
- Equal sides = 12 cm
- Base = 18 cm
- Area = 27√7 cm