Math, asked by Ankit02, 1 year ago

The perimeter of an isosceles right-angled triangle is 6(√2+1) cm . Find its area. Please solve it with explanation.

Answers

Answered by MaheswariS
62

\textsf{Let the length of the equal sides of the isoceles right triangle be x}

\textsf{Then, its hypotenuse is}

\mathsf{Hypotenuse^2=x^2+x^2=2x^2}

\implies\mathsf{Hypotenuse=\sqrt{2}x}

\textsf{\underline{Given:}}

\textsf{Perimeter of the triangle =$6(\sqrt{2}+1)$ cm}

\implies\mathsf{\sqrt{2}x+2x=6(\sqrt{2}+1)}

\implies\mathsf{\sqrt{2}x(1+\sqrt{2})=6(\sqrt{2}+1)}

\implies\mathsf{\sqrt{2}x=6}

\implies\mathsf{x=3\sqrt{2}}

\textsf{Then, the are of the triangle }

\textsf{$=\frac{1}{2}$*base*height}

\mathsf{=\frac{1}{2}*3\sqrt{2}*3\sqrt{2}}

\textsf{=9 square cm}

Answered by antarabhatta84
15

Answer:

9 sq.cm

Step-by-step explanation:

Given,

Perimeter = 6(√2+1) cm

Let the each side of isosceles right angled triangle be x cm

Again,

(BC)² = (AB)² + (AC)²

⇒ (BC) ² = x² + x²

⇒ (BC) ² = 2x²

⇒ (BC) = √2x² = √2 x

According to question,

√2 x + 2x = 6(√2+1)

⇒ √2 x (1+√2) = 6( √2 + 1)

⇒ √2 x = 6

⇒ x = 3√2

Therefore,

Area = ½ x base x height

= ½ x 3√2 x 3√2 sq. cm

= ½ x 9 x 2 sq.cm

= 9 sq.cm

PLEASE MARK ME AS BRAINLIEAST

Similar questions