Math, asked by singhpreetisingh520, 1 month ago

The perimeter of an isosceles triangle is 32 cm. If equal side is 11cm , then the area of the triangle is?​

Answers

Answered by Anonymous
14

GIVEN :

  • Perimeter = 32cm
  • Side 1 = 11cm
  • Side 2 = 11cm

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

TO FIND :

  • Area = ?

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

FORMULA USED :

{\red{\bigstar{\orange{\underbrace{\underline{\overbrace{\overline{\mathfrak{Area =  \sqrt{s(s - a)(s - b)(s - c)}  }}}}}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

SOLUTION :

We know that :

In an isosceles triangle 2 sides are equal and 1 side unequal.

First, finding the 3rd side :

{\mapsto{\bf{Perimeter = a + b + c}}}

{\leadsto{\sf{32 = 11 + 11 + c}}}

{\leadsto{\sf{32 = 22 + c}}}

{\leadsto{\sf{c = 32 - 22}}}

{\red{\underline{\bf{C = 3rd \:  Side = 10cm}}}}

Now, Semi-Perimeter :

{\mapsto{\bf{S = \frac{perimeter}{2}  }}}

{\leadsto{\sf{S = {\cancel\frac{32}{2} }}}}

{\red{\underline{\bf{Semi - Perimeter = 16cm}}}}

Than, Area :

{\mapsto{\bf{Area = \sqrt{s(s - a)(s - b)(s - c)} }}}

{\leadsto{\sf{Area = \sqrt{16(16 - 11)(16 - 11)(16 - 10)} }}}

{\leadsto{\sf{ \sqrt{16 \times 5 \times 5 \times 6} }}}

{\leadsto{\sf{ \sqrt{2 \times 2 \times 2 \times 5 \times 1 \times 5 \times 1 \times 3 \times 2} }}}

{\leadsto{\sf{2 \times  2 \times  5 \times  1  \times  \sqrt{3} }}}

{\large{\purple{:{\mapsto{\underline{\boxed{\bf{20 \sqrt{3}  \: {cm}^{2}  }}}}}}}}

So,

{\red{\underline{\purple{\underline{\boxed{\pink{\mathfrak{Area = 20 \sqrt{3}  {cm}^{2} }}}}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Answered by Anonymous
22

The answer = Aea is 20√6 cm².

Similar questions