Math, asked by kamalsinghb41, 6 months ago

The perimeter of an isosceles triangle is 32 cm. The ratio of the equal side to its base is 3: 2, the sides of the triangle are​

Answers

Answered by SarcasticL0ve
26

Let ABC be an Isosceles triangle having perimeter 32 cm.

The ratio of the equal side to its base is 3:2.

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Let sides of triangle be in form of 'x'

Therefore,

  • Equal sides, AB = AC = 3x
  • Base of triangle, BC = 2x

We know that,

\star\;{\boxed{\sf{\purple{Perimeter_{\triangle} = Sum\;of\;sides}}}}\\ \\

:\implies\sf 3x + 3x + 2x = 32\\ \\

:\implies\sf 8x = 32\\ \\

:\implies\sf x = \cancel{ \dfrac{32}{8}}\\ \\

:\implies{\boxed{\frak{\pink{x = 4}}}}\;\bigstar\\ \\

Therefore, measure of sides are,

  • AB = a = 3 × 4 = 12 cm
  • AC = b = 3 × 4 = 12 cm
  • BC = c = 2 × 4 = 8 cm

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Also, we can find Area of given Isosceles triangle:

Semi - Perimeter of an Isosceles triangle,

:\implies\sf s = \dfrac{a + b + c}{2}\\ \\

:\implies\sf s = \dfrac{12 + 12 + 8}{2}\\ \\

:\implies\sf s = \dfrac{32}{2}\\ \\

:\implies{\boxed{\frak{s = 16\;cm}}}\;\bigstar\\ \\

Now, Finding Area of Isosceles triangle using Heron's Formula,

\star\;{\boxed{\sf{\purple{Area = \sqrt{s(s - a)(s - b)(s - c)}}}}}\\ \\

:\implies\sf \sqrt{16(16 - 12)(16 - 12)(16 - 8)}\\ \\

:\implies\sf \sqrt{16 \times 4 \times 4 \times 8}\\ \\

:\implies\sf 4 \times 4 \times 2 \sqrt{2}\\ \\

:\implies{\boxed{\frak{\pink{32 \sqrt{2}\;cm^2}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;the\;area\;of\; Isosceles\;triangle\;is\; \bf{32\sqrt{2}\;cm^2}.}}}

Similar questions