Math, asked by raya35974, 11 months ago

the perimeter of an isosceles triangle is 42 cm and its base is 1 1/2 times each of the equal side find the length of each side of the triangle the area of the triangle and the height of the triangle .​

Answers

Answered by Anonymous
39

AnswEr :

\bf{\purple{\large{\underline{\underline{\bf{Given\::}}}}}}

The perimeter of an Isosceles triangle is 42 cm and it's base is 1 1/2 times each of the equal side.

\bf{\red{\large{\underline{\underline{\bf{To\:find\::}}}}}}

The length of each side of the triangle the area of the triangle and the height of the Δ.

\bf{\orange{\large{\underline{\underline{\bf{Explanation\::}}}}}}

\bf{We\:have\:in\:Isosceles\: \triangle}\begin{cases}\sf{Perimeter\:(P)=42\:cm}\\ \sf{Two\:side\:are\:equal\:=\:r}\\ \sf{The\:base\:of\:\triangle = \dfrac{3r}{2} }\end{cases}}

\starWe know that formula of the perimeter of triangle :

\longmapsto\sf{Perimeter\:of\:triangle=Side+Side+Side}\\\\\\\longmapsto\sf{42cm=r+r+\dfrac{3r}{2} }\\\\\\\longmapsto\sf{42cm=\dfrac{2r+2r+3r}{2} }\\\\\\\longmapsto\sf{84cm=7r}\\\\\\\longmapsto\sf{r=\cancel{\dfrac{84}{7} }}\\\\\\\longmapsto\sf{\red{r=12\:cm}}

\bf{\large{\underline{\underline{\bf{\blacksquare{Sides\:of\:the\:Isosceles\:\triangle\::}}}}}}

\bullet\sf{1st\:side=r=12\:cm}\\\bullet\sf{2nd\:side=r=12\:cm}\\\\\bullet{\sf{3rd\:side\:=\dfrac{3(12)}{2} =\dfrac{36}{2} =18\:cm}}

\bf{\large{\underline{\underline{\bf{\blacksquare{UsinG\:Heron's\:FormULA\::}}}}}}

\leadsto\tt{Semi-perimeter\:(S)=\dfrac{A+B+C}{2} }\\\\\\\leadsto\tt{Semi-perimeter=\dfrac{12cm+12cm+18cm}{2} }\\\\\\\leadsto\tt{Semi-perimeter=\cancel{\dfrac{42}{2}} cm}\\\\\\\leadsto\tt{\red{Semi-perimeter=21\:cm}}

Now,

\leadsto\bf{Area\:of\:\triangle=\sqrt{S(S-A)(S-B)(S-C)}\:cm^{2}  }\\\\\\\leadsto\tt{Area\:of\:\triangle =\sqrt{21(21-12)(21-12)(21-18)}\: cm^{2} }\\\\\\\leadsto\tt{Area\:of\:\triangle=\sqrt{21(9)(9)(3)} \:cm^{2} }\\\\\\\leadsto\tt{Area\:of\: \triangle=\sqrt{3*7*3*3*3*3*3} \:cm^{2} }\\\\\\\leadsto\tt{\red{Area\:of\:\triangle=27\sqrt{7} \:cm^{2}}}

\bf{\large{\underline{\underline{\bf{\blacksquare{Height\:of\:the\:isosceles\:\triangle\::}}}}}}

\starFormula use of the another area of the triangle :

\Rightarrow\bf{Area\:of\:the\:triangle\:=\:\dfrac{1}{2} \times Base\times Height}\\\\\\\\\Rightarrow\sf{27\sqrt{7} =\dfrac{1}{\cancel{2}} \times \cancel{18}\times h}\\\\\\\\\Rightarrow\sf{27\sqrt{7} =9\times h}\\\\\\\\\Rightarrow\sf{h=\dfrac{\cancel{27}\sqrt{7} }{\cancel{9}} }\\\\\\\\\Rightarrow\sf{\red{h=3\sqrt{7} \:cm}}

Thus,

\underbrace{\bf{\green{The\:area\:of\:Isosceles\: \triangle=27\sqrt{7} \:cm^{2} }}}}}\\\\\underbrace{\bf{\green{The\:height\:of\: \triangle=3\sqrt{7} \:cm }}}}}

Answered by RvChaudharY50
25

||✪✪ QUESTION ✪✪||

The perimeter of an isosceles triangle is 42 cm and its base is 1 1/2 times each of the equal side find the length of each side of the triangle the area of the triangle and the height of the triangle . ?

|| ✰✰ ANSWER ✰✰ ||

Given That, Base of Isosceles is 1(1/2) Times each of The Equal sides.

So, Lets Assume That, Both Equal Sides of isosceles is X cm.

→ Than Base of ∆ = (3x/2)cm.

So,

perimeter of ∆ = (x + x + 3x/2)

→ (2x + 3x/2) = 42

→ (7x/2) = 42

→ 7x = 42*2

→ x = 12cm.

So, Equal sides of Isosceles are = 12 cm.

and, Base of is = 12*(3/2) = 18cm.

___________________________

Now Here Either we use Heron Formula as we have all sides , or we can use Pythagoras Theoram To Find Height of first.

we know That, Perpendicular Of a isosceles divide The base in Equal parts at Right angle .

So, using Pythagoras Theoram Now, we have :-

(18/2)² + (Perpendicular)² = (12)²

→ (Perpendicular)² = (12)² - (9)²

→ (Perpendicular)² = 144 - 81

→ (Perpendicular)² = 63

Square - root both sides we get,

Perpendicular = √(63) = √(7*3*3) = 3√7 cm.

___________________________

So,

Area of isosceles = (1/2) * Base * Height

Area = (1/2) * 18 * (3√7)

Area = 9 * (3√7)

Area = 27√7 cm².

Hence , Area of Required isosceles will be (277)cm² and Its Height on base 18cm will be 37cm.

Similar questions