Math, asked by ItzBrainlisn, 6 months ago

The perimeter of an isosceles triangle is 44 cm and ratio of the equal side to its base is 4 : 3. The area of the triangle is:​

Answers

Answered by brainlyofficial11
364

ᴀɴsᴡᴇʀ

★ given →

☞︎︎︎ the perimeter of triangle is 44cm and ratio of equal side to its base is 4:3

to find

☞︎︎︎ area of the triangle?

solution

☞︎︎︎ we have ratio of equal side to base is 4:3

let equal side is 4x and base is 3x

then, three sides of triangle are;

  • 4x , 4x and 3x

we know that,

sum of sides of triangle = perimeter of triangle

 \bold{➪ \: 4x + 4x + 3x = 44 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \\  \\   \bold{➪ \: 11x = 44} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{➪ \: x =  \cancel{\frac{44}{11} }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\   \\   \bold{➪  \: x = 4} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so, common multiple of sides is x = 4

so that, three sides of triangle of triangle are

  • 4x = 4 × 4 = 16cm
  • 4x = 4 × 4 = 16cm
  • 3x = 3 × 4 = 12cm

_________________________

✩ now find the area of triangle by using heron's formula

→ if a,b and c are sides of triangle then,

 \orange{ \bold { area \:  =  \sqrt{s(s - a)(s - b)(s - c)}   }}  \:  \: \\  \\   \orange{ \bold{where,  \: s =  \frac{a + b + c}{2} }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

_________________________

let here,

a = 16cm , b = 16cm and c = 12cm

then,

 \bold{s =  \frac{a + b + c}{2} } \\   \\  {  \tt:  \implies \: s =  \frac{16 + 16 + 12}{2} } \\  \\  { \tt : \implies \: s =   \frac{44}{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\   \bold{ : \implies \: s = 22 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

then, area of this triangle(A) ;

{ \tt A =   \sqrt{s(s - a)(s - b)(s - c)} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  { \tt :➪ \: A =  \sqrt{22(22 - 16)(22 - 16)(22 - 12)}  } \\  \\  { \tt : ➪ \: A   =  \sqrt{22 \times 6 \times 6 \times 10} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ { \tt: ➪ \: A =  \sqrt{2 \times 11 \times 6 \times 6 \times 2 \times 5} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ { \tt: ➪ \: A = 2 \times 6 \sqrt{11 \times 5} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \pink{\bold{: ➪ \: A = 12 \sqrt{55} }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

hence, area of triangle is 12√55 cm² or 88.99cm²(approx)

Answered by Anonymous
131

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answer:-

  • \underline{\boxed{\large\rm{Area = 88.99\:cm^{2} }}}

Given:-

  • Perimeter of the isosceles triangle = 44 cm.

  • Ratio of it's side and base = 4:3 = 4/3

To Find:-

  • Area of the triangle.

Solution:-

An isosceles triangle has two equal sides.

So,

Let the two equal side be 4x.

Let the base be 3x.

Then,

\sf\underline{\boxed{\large{\mathfrak{perimeter = side + base}}}}

\rm { : \implies \:  \: 4x + 4x + 3 x=44}

\rm { : \implies \:  \: 8x+3x=44}

\rm { : \implies \:  \: 11x=44}

\rm { : \implies \:  \: x= \dfrac{44}{11} }

\rm:\implies \underline{\boxed{\pink{\mathfrak{x = 4}}}}\:\:\star

Therefore,

➼ Side (a) = 4 × 4 = 16 cm

➼ Side (b) = 4 × 4 = 16 cm

➼ Base (c) = 3 × 4 = 12

Now,

\rm { : \implies \:  \: s=\dfrac{a+b+c}{2}   }

\rm { : \implies \:  \: s=\dfrac{16+16+12}{2}   }

\rm { : \implies \:  \: s=\dfrac{32+12}{2}   }

\rm { : \implies \:  \: s=\dfrac{44}{2}   }

\rm:\implies \underline{\boxed{\blue{\mathfrak{s=22}}}}\:\:\star

Formula to find the area :-

\sf\underline{\boxed{\large{\mathfrak{  \sqrt{s(s-a)(s-b)(s-c)}  }}}}

\rm { : \implies \:  \: \sqrt{22(22-16)(22-16)(22-12)}   }

\rm { : \implies \:  \: \sqrt{22 \times(6)\times(6)\times(10)}  }

\rm { : \implies \:  \: \sqrt{2\times11\times6\times6\times2\times5}   }

\rm { : \implies \:  \: 2 \times6 \sqrt{11\times5}  }

\rm { : \implies \:  \: 12\sqrt{55}  }

\rm:\implies \underline{\boxed{\purple{\mathfrak{88.99\:cm^{2} }}}}\:\:\bigstar

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions