Math, asked by eyyyyy1, 3 months ago

The perimeter of an isosceles triangle is 44 cm and ratio of the equal side to its base is 4 : 3. The area of the triangle is:​

Answers

Answered by SweetCharm
30

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Required Answèr :

\underline{\boxed{\large\rm{Area = 88.99\:cm^{2} }}}

Given:-

Perimeter of the isosceles triangle = 44 cm.

Ratio of it's side and base = 4:3 = 4/3

To Find:-

Area of the triangle.

Solution:-

An isosceles triangle has two equal sides.

So,

Let the two equal side be 4x.

Let the base be 3x.

Then,

\sf\underline{\boxed{\large{\mathfrak{perimeter = side + base}}}}

\rm { : \implies \:  \: 4x + 4x + 3 x=44}

\rm { : \implies \:  \: 8x+3x=44}

\rm { : \implies \:  \: 11x=44}

\rm { : \implies \:  \: x= \dfrac{44}{11} }

\rm:\implies \underline{\boxed{\pink{\mathfrak{x = 4}}}}\:\:\star

Therefore,

➼ Side (a) = 4 × 4 = 16 cm

➼ Side (b) = 4 × 4 = 16 cm

➼ Base (c) = 3 × 4 = 12

Now,

\rm { : \implies \:  \: s=\dfrac{a+b+c}{2}   }

\rm { : \implies \:  \: s=\dfrac{16+16+12}{2}   }

\rm { : \implies \:  \: s=\dfrac{32+12}{2}   }

\rm { : \implies \:  \: s=\dfrac{44}{2}   }

\rm:\implies \underline{\boxed{\blue{\mathfrak{s=22}}}}\:\:\star

Formula to find the area :-

\sf\underline{\boxed{\large{\mathfrak{  \sqrt{s(s-a)(s-b)(s-c)}  }}}}

\rm { : \implies \:  \: \sqrt{22(22-16)(22-16)(22-12)}   }

\rm { : \implies \:  \: \sqrt{22 \times(6)\times(6)\times(10)}  }

\rm { : \implies \:  \: \sqrt{2\times11\times6\times6\times2\times5}   }

\rm { : \implies \:  \: 2 \times6 \sqrt{11\times5}  }

\rm { : \implies \:  \: 12\sqrt{55}  }

\rm:\implies \underline{\boxed{\purple{\mathfrak{88.99\:cm^{2} }}}}\:\:\bigstar

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by BloomingBud01
2

Answer:

Answer is 88.99 cm²

Hope it can help you and please mark me as a brainlist...

Similar questions