Math, asked by Zaimius, 5 hours ago

The perimeter of an isosceles triangle is 64cm. The ratio of the equal sidetoitsbaseis3:2.Find theareaofthetriangle.

Answers

Answered by Akankshakumari07
1

Answer:

Let the ratio be 3a:2a.

Perimeter of the. = Sum of all sides

64cm = 3a+ 2a+ a

64cm= 6a

64cm/6= a

a= 64/6cm

:.3a= 3(64/6)

= 32

2a=2(64/6)

= 64/3

:.the area of triangle = 1/2 X b X h

= 1/2 X 32 X 64/3 cm²

= 1 X 32 X 32/3 cm²

= 1024/3 cm²

= 341.33333cm²

Step-by-step explanation:

Answered by Anonymous
101

Given

  • ➙ The perimeter of an isosceles triangle is 64 cm .The ratios of the equal sides to its base is 3:2 .

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

To Find :

  • ➙ Find the area of Triangle .

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Solution :

Concept :

As we have been already given in the question the perimeter and the ratio of sides using the formula perimeter of triangle we can derive the value of x in the ratios .And after finding the sides we can easily calculate the area of triangle by applying Heron's Formula . So,Let's solve :

\qquad{━━━━━━━━━━━━}

Let the Ratios :

We know that in a isosceles triangle two sides are equal therefore the ratio of equal sides is 3x and ratio of base is 2x .Hence,

  • ➳ 1st side = 3x
  • ➳ 2nd side = 3x
  • ➳ 3rd side = 2x

Calculating the value of x :

Formula Used :

\large{\gray{\bigstar}} \: \: \: {\underline{\boxed{\red{\sf{ Perimeter{\small_{(Triangle)}} = a + b + c}}}}}

Calculation starts :

\qquad{\longmapsto{\sf{ a + b + c = 64 \: cm}}}

\qquad{\longmapsto{\sf{ 3x + 3x + 2x = 64 \: cm}}}

\qquad{\longmapsto{\sf{ 8x = 64 \: cm}}}

\qquad{\longmapsto{\sf{ x = \cancel\dfrac{64}{8} }}}

{\sf{ Value \: of \: x \: = {\green{\sf{ 8}}}}}

Sides of Triangle :

  • ➳ 1st side = 3x = 3 × 8 = 24 cm
  • ➳ 2nd side = 3x = 3 × 8 = 24 cm
  • ➳ 3rd side = 2x = 2 × 8 = 16 cm

Calculating the Area of Triangle :

Formula Used :

\large{\gray{\bigstar}} \: \: \: {\underline{\boxed{\red{\sf{ Area{\small_{(Triangle)}} = \sqrt{s(s - a)(s - b)(s - c)}}}}}}

Calculation starts :

Semi - Perimeter :

\qquad{\longmapsto{\sf{S = \dfrac{Perimeter}{2}}}}

\qquad{\longmapsto{\sf{S = \cancel\dfrac{64}{2}}}}

{\sf{ Semi \: Perimeter \: = {\pink{\sf{ 32 \: cm}}}}}

Area :

\qquad{\longmapsto{\sf{ Area =\sqrt{s(s - a)(s - b)(s - c)} }}}

\qquad{\longmapsto{\sf{ Area =\sqrt{32(32 - 24)(32 - 24)(32 - 16)} }}}

\qquad{\longmapsto{\sf{ Area =\sqrt{32 \times 8 \times 8 \times 16} }}}

\qquad{\longmapsto{\sf{ Area =\sqrt{32 \times 8 \times 8 \times 16} }}}

{\sf{ Area \: of \: Triangle \:= {\orange{\sf{ 128 \sqrt{2} \: cm²}}}}}

\qquad{━━━━━━━━━━━━}

Therefore :

❝ {\sf{Area \: of \:the \:given \:triangle \: is \:{\blue{\underline{\red{\sf{ 128 \sqrt{2} \: cm². }}}}}}}❞

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions