Math, asked by aank1atkaharpitaBan, 1 year ago

The perimeter of an isosceles triangle is 72cm and its base is 1.6 times each of the equal sides. Find the area of triangle and its height.

Answers

Answered by ARoy
3
Let the base of the triangle is b, the height is h and the two equal sides are a and c where a=c
then by the given question, 2a+b=72 and
b=1.6a
∴, 2a+1.6a=72
or, 3.6a=72
or, a=72/3.6
or, a=20 cm
∴, c=20 cm and b=1.6×20=32 cm
h divides the isosceles triangle into 2 right angled triangles.
then by Pythagoras's theorem,
h²+(b/2)²=a²
or, h²=a²-(b/2)²
or, h²=20²-(32/2)²
or, h²=400-16²
or, h²=400-256
or, h²=144
or, h=12 cm
∴, the area of the triangle =(base×height)/2
                                         =(32×12)/2
                                         =384/2
                                         =192 cm²
 ∴, The height of the isosceles triangle is 12 cm and the area is 192 cm².
Answered by Mathexpert
3
Let the two equal sides be x cm
the base = 1.6x
Perimeter = 72
x + x + 1.6x = 72
3.6x = 72
x = 20
The length of equal sides = 20 cm
Length of the base = 1.6*20 = 32 cm

Area of triangle =  \sqrt{s(s-a)(s-b)(s-c)}
Here s = (20+20+32)/2 = 72/2 = 36

Area of triangle =  \sqrt{36(36-20)(36-20)(36-32)}
                          = 
 \sqrt{36(16)(16)(4)}
                          =  \sqrt{(144)(256)}
                          = 192 sq cm

But the area of the triangle = 1/2 * base * height

1/2 * 32 * height = 192

16 * height = 192

height = 12 cm

Similar questions