Math, asked by abhaymsrrana, 7 months ago

The perimeter of an rectangle is 90m. If the length is increased by 3m and breath is decreased by 4m. Then area is decreased by 52m ^2. Find the original dimension of the rectangle.

Answers

Answered by rajupradhanpatna2020
0

Answer:

Let the length of the rectangle be x metres and the breadth be y metres.

Area of the rectangle=length×breadth

=x×y=xy sq. metres

From the given information, we have,

(x+3)×(y−4)=xy−67

and(x−1)×(y+4)=xy+89

(x+3)×(y−4)=xy−67

=>xy−4x+3y−12=xy−67

=>4x−3y=55

=>4x=3y+55....(i)

Also,(x−1)×(y+4)=xy+89

=>xy+4x−y−4=xy+89

=>4x−y=93....(ii)

Substituting equation (i) in equation (ii), we get,

4x−y=93

=>3y+55−y=93

=>2y=38

=>y=19

Substituting y=19 in equation (i), we get,

4x=3y+55

=>4x=3(19)+55

=>4x=112

=>x=28

Therefore, length of rectangle =x=28 metres

breadth of rectangle =y=19 metres

Answered by rajstar34
0

Answer:

l=23m

b=22m

Step-by-step explanation:

given,perimeter = 90m

l = x-3m

b= x-4m

since , perimeter of a rectangle = 2 (l+b)

implies,90m= 2 ( x-3 + x- 4)

implies , 90m = 2 × (2x - 7)

implies , 90m = 4x - 14

implies , 90 + 14 = 4x

imp. 104 = 4x

imp. x = 104

____

4

imp. x = 26

now , the dimensions are :

length = ( x - 3)= (26 - 3)

= 23m

breadth = (x - 4) = (26 - 4)

= 22m

Similar questions