Math, asked by abhaymsrrana, 7 months ago

The perimeter of and rectangle plot is 90m and if the length is increased by 3m and breath is decreased by 4m and then area is decreased by 52 m^2. Find the original dimension of the rectangle plot.

Answers

Answered by Anonymous
5

\sf\blue{\underline{\underline{Answer:}}} \\ \\ \sf{The \ dimensions \ of \ the \ rectangle \ are} \\ \sf{25 \ m \ 20 \ m \ respectively.} \\ \\ \sf\orange{Given:} \\ \\ \sf{\leadsto{Perimeter \ of \ a \ rectangle \ plot=90 \ m}} \\ \\ \sf{\leadsto{If \ it's \ length \ is \ increased \ by \ 3 \ m}} \\ \sf{and \ breadth \ is \ decreased \ by \ 4 \ m \ then \ area} \\ \sf{is \ decreased \ by \ 52 \ m^{2}} \\ \\ \sf\pink{To \ find:} \\ \\ \sf{The \ original \ dimensions \ of \ the \ rectangle}

\sf\green{\underline{\underline{Solution:}}} \\ \\ \sf{Let \ the \ original \ length \ and \ breadth \ be \ x \ and \ y.} \\ \\ \sf{According \ to \ the \ first \ condition} \\ \\ \boxed{\sf{Perimeter \ of \ rectangle=2(l+b)}} \\ \\ \sf{90=2(x+y)} \\ \\ \sf{\therefore{x+y=45...(1)}} \\ \\ \sf{According \ to \ the \ second \ condition} \\ \\ \sf{(x+3)(y-4)=xy-52} \\ \\ \sf{xy-4x+3y-12=xy-52} \\ \\ \sf{\therefore{4x-3y=40...(2)}} \\ \\ \sf{Multiply \ equation \ (1) \ by \ 3} \\ \\ \sf{3x+3y=135...(3)} \\ \\ \sf{Add \ equations \ (1) \ and \ (2)} \\ \\ \sf{7x=175} \\ \\ \sf{\therefore{x=\dfrac{175}{7}}} \\ \\ \boxed{\sf{x=25}} \\ \\ \sf{Substitute \ x=25 \ in \ equation \ (1)} \\ \\ \sf{25+y=45} \\ \\ \boxed{\therefore{y=20}}} \\ \\ \purple{\tt{\therefore{The \ dimensions \ of \ the \ rectangle \ are}}} \\ \purple{\tt{25 \ m \ and \ 20 \ m \ respectively.}}

Similar questions