Math, asked by visa7, 1 year ago

The perimeter of ends of frustum are 48cm and 36cm.if the height of the frustum be 11 cm . find the volume

Answers

Answered by rohitkumarabc68
0

Here is your answer check it

Attachments:
Answered by Anonymous
137

\huge\bold\green{AnSwer:-}

According to the question Height of frustum = 11 cm

Also (Given)

Perimeter = 36 cm

2πr1 = 36

So,

\tt{\rightarrow r1=\dfrac{36}{2\pi}}

Or,

\tt{\rightarrow r1=\dfrac{18}{\pi}}

Now,

Perimeter = 48 cm

2πr2 = 48

\tt{\rightarrow r2=\dfrac{24}{\pi}}

Using Formula :-

Volume of Frustum

= 1/3 π {(r1)²+ (r2)² + (r1r2)} h

\tt{\rightarrow\dfrac{1}{3}\pi[(r1)^2+(r2)^2+(r1r1)]h}

\tt{\rightarrow\dfrac{1}{3}\times\pi\times h[(\dfrac{18}{\pi})^2+(\dfrac{24}{\pi})^2+[\dfrac{18}{\pi}\times\dfrac{24}{\pi}]}

\tt{\rightarrow\dfrac{1}{3}\times\pi\times 11[\dfrac{324}{\pi^2}+\dfrac{576}{\pi^2}+\dfrac{432}{\pi^2}]}

\tt{\rightarrow\dfrac{1}{3}\times\pi \times 11\times\dfrac{1}{\pi^2}(324+576+432)}

\tt{\rightarrow\dfrac{1}{3}\times\pi \times 11\times\dfrac{1}{\pi^2}(1332)}

\tt{\rightarrow\dfrac{11}{3}\times\dfrac{1}{\pi}(1332)}

\tt{\rightarrow\dfrac{11}{3}\times\dfrac{7}{22}(1332)}

\tt{\rightarrow\dfrac{11\times 7\times 1332}{22\times 3}}

Hence, Volume of frustum = 154 cm³

Similar questions