the perimeter of rectangle is 28x cube+8x sqare+4.one of its sides is 8x square +4x. find the other side.
Answers
Correct Question :–
The perimeter of rectangle is 28x³ + 16x² + 8x + 4. One of its sides is 8x² + 4x. Find the other side.
Given :–
- Perimeter of a rectangle = 28x³ + 16x² + 8x + 4.
- One side of a rectangle = 8x² + 4x.
To Find :–
- The other side of a rectangle.
Solution :–
We know that,
Perimeter of a rectangle = 28x³ + 16x² + 8x + 4
↣ 2l + 2b = 28x³ + 16x² + 8x + 4
Now, put the given values.
↣ 2(8x² + 4x) + 2b = 28x³ + 16x² + 8x + 4
Open the bracket.
↣ 16x² + 8x + 2b = 28x³ + 16x² + 8x + 4
↣ 2b = (28x³ + 16x² + 8x + 4) – (16x² + 8x)
Again, open both the brackets.
↣ 2b = 28x³ + 16x² + 8x + 4 – 16x² – 8x
↣ 2b = 28x³ + 16x² – 16x² + 8x – 8x + 4
↣ 2b = 28x³ + 0 + 0 + 4
↣ 2b = 28x³ + 4
↣ b =
Now, divide the denominator (2) and numerator numbers (28 and 4), we obtain
↣ b = 14x³ + 2
Hence,
The other side of a rectangle is 14x³ + 2.
Check :–
Perimeter of a rectangle = 28x³ + 16x² + 8x + 4
↣ 2l + 2b = 28x³ + 16x² + 8x + 4
↣ 2(14x³ + 2) + 2(8x² + 4x) = 28x³ + 16x² + 8x + 4
Now, open both the brackets.
↣ 28x³ + 4 + 16x² + 8x = 28x³ + 16x² + 8x + 4
↣ 28x³ + 16x² + 8x + 4 = 28x³ + 16x² + 8x + 4
Since, the L.H.S. and the R.H.S. are equal.
So, the other side is 14x³ + 2 is correct.