Math, asked by gauri2887, 1 year ago

the perimeter of rectangle is 40cm. the length of the rectangle is more than double its breadth by 2. find the length and breadth

Answers

Answered by maya51
6
P=2l+2w

We are given, 

P=40cm

l=2w+2

Plug these into the first formula and solve for the dimensions,

length and width, of the rectangle:

 

40=2(2w+2)+2w              Simplify

40=4w+4+2w

40=6w+4

36=6w

6=w OR the width is 6cm, therefore, 

the length is

l=2(6)+2

l=14cm

 

To calculate the area of a rectangle, A=lw,

plug the length,14cm, and the width, 6cm, into this formula

A=(14)(6)

A=84cm2 OR the area of the rectangle is 84cm2.


gauri2887: not get it
maya51: see it properly you are going to understand
gauri2887: oky
maya51: hmm
gauri2887: bt y we need w
maya51: w stands for width
gauri2887: haa
Answered by Anonymous
4

\bf{\underline{\underline \blue{Solution:-}}}

\sf\underline{\red{\:\:\: AnswEr:-\:\:\:}}

The breadth of the rectangle = 6 Cm

The length of the rectangle = 14 Cm

\sf\underline{\red{\:\:\: Given:-\:\:\:}}

The perimeter of rectangle is 40cm.

The length of the rectangle is more than double its breadth by 2

\sf\underline{\red{\:\:\: Need\:To\: Find:-\:\:\:}}

The breadth of the rectangle = ?

The length of the rectangle = ?

\bf{\underline{\underline \blue{Explanation:-}}}

\sf\underline{\pink{\:\:\: Diagram:-\:\:\:}}

\setlength{\unitlength}{2cm}\begin{picture}(16,4)\thicklines\put(8,3){\circle*{0.1}}\put(7.8,3){\large{D}}\put(7.2,2){\mathsf{\large{?cm}}}\put(8,1){\circle*{0.1}}\put(7.8,1){\large{A}}\put(9.3,0.8){\mathsf{\large{?cm}}}\put(11.1,1){\large{B}}\put(8,1){\line(1,0){3}}\put(11,1,){\circle*{0.1}}\put(8,1){\line(0,2){2}}\put(11,1){\line(0,3){2}}\put(8,3){\line(3,0){3}}\put(11,3){\circle*{0.1}}\put(11.1,3){\large{C}}\end{picture}

Let the breadth of the rectangle = y

\sf\underline{\green{\:\:\: ThereFore:-\:\:\:}}

Length = 2y + 2

\sf\underline{\red{\:\:\: Formula\:Used\: Here:-\:\:\:}}

\bigstar \:  \boxed{ \sf \: Perimeter\:of\:a\: rectangle = 2 \times (Length + Breadth) }\\\\

\sf\underline{\green{\:\:\: Now,Putting\:the\: values:-\:\:\:}}

\dashrightarrow \sf {Perimeter \:of\:a\: rectangle = 2[(2y + 2) + (y)]} \\\\

\dashrightarrow \sf {40 = 2 \times (3y + 2) }\\\\

\dashrightarrow \sf {40 = 6y + 4} \\\\

\dashrightarrow \sf {40 - 4 = 60}\\\\

\dashrightarrow \sf {y = \dfrac{\cancel{36}}{\cancel{6}}\:} \\\\

\dashrightarrow \sf {y = 6} \\\\

\sf\underline{\green{\:\:\: ThereFore:-\:\:\:}}

The breadth of the rectangle = y

The breadth of the rectangle = 6 Cm

\sf\underline{\green{\:\:\: And:-\:\:\:}}

The length of the rectangle = 2y + 2

The length of the rectangle = 2 × 6 + 2

The length of the rectangle = 12 + 2

The length of the rectangle = 14 Cm

\rule{200}{2}

Similar questions