Math, asked by garnafreef, 9 months ago

the perimeter of rectangular field is 196 meters. It's length is 2m more than thrice it's breadth. What are the length and breadth of the field?​

Answers

Answered by rsagnik437
77

Given:-

☆Perimeter of the rectangular field=196m

☆Length of the field is 2m more than thrice it's breadth.

To find:-

☆Length and breadth of the field

Solution:-

=>Let the breadth of the field be x m

=>Thus,length of the field=(3x+2)m

We know that,perimeter of a rectangle:-

=>2(length+breadth)

Now:-

=>2(x+3x+2)=196

=>2(4x+2)=196

=>8x+4=196

=>8x=196-4

=>8x=192

=>x=192/8

=>x=24

Thus:-

•Breadth of the field = 24m.

•Length of the field=(3×24+2)=74m.

Answered by Anonymous
37

ANSWER

\large\underline\bold{GIVEN,}

\sf\dashrightarrow perimeter\:of\:field\:is\:196m

\sf\dashrightarrow let\:breadth\:kf\:a\:rectangle\:be\:x\:m

\sf\therefore length\:is\:2m\:more\:than\:thrice\:of\:its\:breadth

\large\underline\bold{TO\:FIND,}

\sf\large\dashrightarrow length\:and\:breadth\:of\:rectangle\:field

FORMULA IN USE,

\large{\boxed{\bf{ \star\:\: PERIMETER\:OF\:RECTANGLE= 2(L+B) \:\: \star}}}

\large\underline\bold{SOLUTION,}

\sf\therefore 196=2 \times \bigg( x +(3x+2) \bigg)

\sf\implies 196=2 \times \bigg( 4x+2\bigg)

\sf\implies 196= 8x+4

\sf\implies 196-4=8x

\sf\implies 192= 8x

\sf\implies x=\dfrac{192}{8}

\sf\implies x=\cancel \dfrac{192}{8}

\sf\implies x= 24m

\large{\boxed{\bf{ \star\:\:x=24m \:\: \star}}}

\sf\large\therefore \:the\:breadth\:of\:a\:rectangular\:field\:is\:24m

HEIGHT OF THE RECTANGULAR FIELD IS,

\sf\therefore HEIGHT= (3x+2)m

\sf\therefore x= 24

\sf\implies 3(24)+2

\sf\implies 72+2

\sf\implies 74m

\large{\boxed{\bf{ \star\:\: height\:of\: rectangular\:field\:=74m\:\: \star}}}

\large\underline\bold{HEIGHT\:OF\:A\: RECTANGULAR\: FIELD\:IS\:74m}

\large\underline\bold{BREADTH\:OF\: RECTANGLE\:IS\:24m}

___________________

Similar questions