Math, asked by hitipari9009, 3 months ago

The perimeter of square field is numerically equal to its area. Find each side of the square

Answers

Answered by Anonymous
0

Hence, each side of the square is 4(unit)².

Answered by Anonymous
4

 \huge \sf \underline \red{Answer : }

\sf \underline \green{ \therefore \: a = 4}

 \sf \underline \green{ \therefore \: Area \: of \: square =  {a}^{2}  = 4 \times 4 = 16}

 \sf \huge \underline \pink{To \:  find  : }

  • Each side of the square

 \huge \sf \underline \blue{Solution : }

 \sf \underline{Given : }

  • The perimeter of square field is numerically equal to its area.

 \sf \underline{so, \:  we \: know \: that : }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \star \:  \sf \underline{perimeter \: of \: square = 4a}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \star \:  \sf \underline{area\: of \: square =  {a}^{2} }

  • so now we have to compare perimeter and area of square we get,

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \implies \sf{4a =  {a}^{2}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \implies \sf{ \dfrac{ {a}^{2} }{4} = 4 }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \implies \sf{a = 4}

 \sf \underline \green{ \therefore \: a = 4}

 \sf \underline \green{ \therefore \: Area \: of \: square =  {a}^{2}  = 4 \times 4 = 16}

Similar questions