the perimeter of square is 64 the area of a rectangle is 6 metre 2 less than the area of the square given if the length of the rectangle is 25 metre find its breadth
Answers
Answer:
Breadth of this rectangle is 10 m.
Step-by-step explanation:
Here,
Perimeter of a square is 64 metre { unit for the perimeter of the square is not mentioned.Here, it is taken as metre }
From the properties of squares :
- Perimeter of square : 4 x length of side
- Area of square : side^2 or side x side
Here,
= > Perimeter of square = 64 m
= > 4 x length of side of this square = 64 m
= > length of side of this square = 64 m / 4 or 16 m
Thus,
= > Area of this square = ( 16 m )^2
= > Area of this square = 256 m^2
Given,
Area of rectangle is 6 metre^2 less than the area of the square.
Also,
Length of the rectangle is 25 metre.
From the properties of rectangle :
- Area of rectangle is the product of lengths of its length and breadth.
According to this question :
= > Area of rectangle = area of square - 6 m^2
= > length of rectangle x breadth of rectangle = 256 m^2 - 6 m^2
= > 25 m x breadth of rectangle = 250 m^2
= > Breadth of rectangle = ( 250 m^2 ) / 25m = 10 m
Hence the breadth of this rectangle is 10 m.
Looking for a short solution ?
According to the question :
= > Perimeter of square = 64 m
= > 4 x side of square = 64 m
= > side of square = 16 m
So, area of square should be ( 16 m )^2 or 256 m^2
Given,
= > area of rectangle = area of square - 6 m^2
= > 25 m x breadth = 256 m^2 - 6 m^2
= > Breadth of rectangle = 250 m^2 / 25 m = 10 m
Hence the breadth of this rectangle is 10 m.
Step-by-step explanation:
area of rectangle
is
equa
to
10