Math, asked by Anonymous, 1 month ago

The perimeter of the base of a right circular cylinder is 44 cm. And the height of the cylinder is 10 cm. then it's curved surface area is​

Answers

Answered by MяMαgıcıαη
83

Given information,

The perimeter of the base of a right circular cylinder is 44 cm. And the height of the cylinder is 10 cm. Then it's curved surface area is?

  • Perimeter of base of cylinder = 44 cm
  • Height of cylinder = 10 cm
  • C.S.A of cylinder = ?

As we know that base of right circular cylinder is circular in shape.

Using formula,

Perimeter of circle = 2πr

Where,

  • π = Pi
  • r = radius of base of cylinder

We have,

  • π = 22/7
  • Perimeter of base = 44 cm

Putting all values,

➻ 88 = 2 × 22/7 × r

➻ 88 = 44/7 × r

➻ r = 88 × 7/44

➻ r = 2 × 7

r = 14

  • Henceforth, radius of ase of right circular cylinder is 14 cm.

Now,

  • We know that

C.S.A of cylinder = 2πrh

Where,

  • π = Pi
  • r = radius of base of cylinder
  • h = height of cylinder

We have,

  • π = 22/7
  • r = 14 cm
  • h = 10 cm

Putting all values,

➻ C.S.A of cylinder = 2 × 22/7 × 14 × 10

➻ C.S.A of cylinder = 2 × 22 × 2 × 10

➻ C.S.A of cylinder = 44 × 2 × 10

➻ C.S.A of cylinder = 88 × 10

C.S.A of cylinder = 880 cm²

  • Henceforth, curved surface area of right circular cylinder is 880 cm².

▬▬▬▬▬▬▬▬▬▬▬▬

Answered by Anonymous
73

Answer:

\begin{gathered}{\underline{\underline{\maltese{\textsf{\textbf{\:Given :}}}}}}\end{gathered}

  • ➜ The perimeter of the base of a right circular cylinder = 44 cm
  • ➜ Height of the cylinder = 10 cm

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\textsf{\textbf{\:To Find :}}}}}}\end{gathered}

  • ➜ Curved surface area of cylinder

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\textsf{\textbf{\:Using Formulae :}}}}}}\end{gathered}

\bigstar{\underline{\boxed{\bf{\red{Perimeter  \: of \:  cylinder = 2 \pi r}}}}}

\bigstar{\underline{\boxed{\bf{\red{Curved  \: surface \:  area  \: of \:  cylinder =2 \pi rh}}}}}

\green\bigstar Where

  • π = 22/7
  • r = radius
  • h = height

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\textsf{\textbf{\:Solution :}}}}}}\end{gathered}

\green\bigstar Here

  • Perimeter of Cylinder = 44 cm
  • Height of the cylinder = 10 cm

\begin{gathered}\end{gathered}

\green\bigstar Firstly, Finding the radius of cylinder

{\dashrightarrow{\pmb{\sf{Perimeter  \: of \:  cylinder = 2 \pi r}}}}

  • Substuting the values

{\dashrightarrow{\sf{88 \: cm= 2   \times \dfrac{22}{7} \times   r}}}

{\dashrightarrow{\sf{88 \: cm=  \dfrac{2 \times 22}{7} \times   r}}}

{\dashrightarrow{\sf{88 \: cm=  \dfrac{44}{7} \times   r}}}

{\dashrightarrow{\sf{Radius_{(Cylinder)} = 88 \times  \dfrac{7}{44} }}}

{\dashrightarrow{\sf{Radius_{(Cylinder)} =  \cancel{88} \times  \dfrac{7}{\cancel{44}}}}}

{\dashrightarrow{\sf{Radius_{(Cylinder)} =2 \times 7 }}}

{\dashrightarrow{\sf{Radius_{(Cylinder)} =14 \: cm }}}

\bigstar{\underline{\boxed{\bf{\purple{Radius \: of \: cylinder=14 \: cm }}}}}

The radius of cylinder is 14 cm.

\begin{gathered}\end{gathered}

\green\bigstar Now, Finding the curved surface area of cylinder

{\dashrightarrow{\pmb{\sf{Curved  \: surface \:  area  \: of \:  cylinder =2 \pi rh}}}}

  • Substuting the values

{\dashrightarrow{\sf{Curved  \: surface \:  area  \: of \:  cylinder =2  \times  \dfrac{22}{7} \times 10 \times 14}}}

{\dashrightarrow{\sf{Curved  \: surface \:  area  \: of \:  cylinder = \dfrac{2 \times 22 \times 10 \times 14}{7}}}}

{\dashrightarrow{\sf{Curved  \: surface \:  area  \: of \:  cylinder = \dfrac{6160}{7}}}}

{\dashrightarrow{\sf{Curved  \: surface \:  area  \: of \:  cylinder =  \cancel{\dfrac{6160}{7}}}}}

{\dashrightarrow{\sf{Curved  \: surface \:  area  \: of \:  cylinder = 880 \:  {cm}^{2} }}}

{\bigstar\underline{\boxed{\bf{\purple{Curved  \: surface \:  area  \: of \:  cylinder = 880 \:  {cm}^{2}}}}}}

The curved surface area of cylinder is 880 cm².

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\textsf{\textbf{\:Additional Information :}}}}}}\end{gathered}

\quad↠ Volume of cylinder = πr²h

\quad↠ T.S.A of cylinder = 2πrh + 2πr²

\quad↠ Volume of cone = ⅓ πr²h

\quad↠ C.S.A of cone = πrl

\quad↠ T.S.A of cone = πrl + πr²

\quad↠ Volume of cuboid = l × b × h

\quad↠ C.S.A of cuboid = 2(l + b)h

\quad↠ T.S.A of cuboid = 2(lb + bh + lh)

\quad↠ C.S.A of cube = 4a²

\quad↠ T.S.A of cube = 6a²

\quad↠ Volume of cube = a³

\quad↠ Volume of sphere = 4/3πr³

\quad↠ Surface area of sphere = 4πr²

\quad↠ Volume of hemisphere = ⅔ πr³

\quad↠ C.S.A of hemisphere = 2πr²

\quad↠ T.S.A of hemisphere = 3πr²

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\textsf{\textbf{\:Learn More :}}}}}}\end{gathered}

Find the curved surface area of the cylinder whose circumference is 44cm and height 10cm

https://brainly.in/question/8927859

Similar questions