Math, asked by tripadarsh4, 7 months ago

The perimeter of the circle is equal to that of a square. If the area of the circle is π3. Then find out area of the square?

Answers

Answered by Anonymous
5

\sf \huge\underline{given :  }

  • Perimeter of square = Perimeter of Circle.
  • Area of circle = π³.

\sf \huge\underline{ to \: find : }

  • The area of square.

\sf \huge\underline{ formulae \: used : }

\boxed{ \sf{perimeter \: of \: circle =2\pi \: r }} \\  \\  \boxed{ \sf{area \: of \: circle = \pi \:  {r}^{2} }} \\  \\  \boxed{ \sf{perimeter \: of \: square = 4 \times side}} \\  \\  \boxed{ \sf{area \: of \: square = {side}^{2}  }}

\sf \huge\underline{solution :  }

Given that Area(circle) = π³.

Equating with formula,

⇒πr² = π³.

⇒r² = π².

⇒r = π --------(1)

■ Perimeter of circle = 2πr.

From equation (1) ,

Perimeter = 2π.π

Perimeter(circle) = 2π²

Perimeter(circle) = Perimeter(Square)

⇒2π² = 4side

⇒ π² = 2side

⇒side = π²/2 ------(2)

■Area of square = side².

From equation(2),

 \sf{area \: of \: square =  { (\frac{ {\pi}^{2} }{2}) }^{2} } \\  \\  \sf{ \therefore \: area \: of \: square =  \frac{ {\pi}^{4} }{2} }

So, area of square = π⁴/2.

Similar questions