Math, asked by TheRealSardar1846, 8 months ago

The perimeter of the sector of a circle of area 36 pi sq.cm is 28 cm .The area of sector is equal to

Answers

Answered by mysticd
2

 Let \: radius \: of \: the \: circle = r \:cm

length \: of \: arc = l \:cm

 and \: sector \: angle = \theta

 i) Area \:of \:the \: circle = 36 \:\pi cm^{2}

 \implies \pi r^{2} = 36 \:\pi cm^{2}

 \implies r^{2} = \frac{36 \:\pi cm^{2} }{\pi }

 \implies r^{2} = 36

 \implies r = 6 \:cm \: --(1)

 ii) Perimeter \: of \: the \: sector = 28 \:cm

 \implies l + 2r = 28 \:cm

 \implies l + 2\times 6 = 28 \:cm \: \blue { [ From \: (1) ]}

 \implies l = 28 - 12

 \implies l = 16 \:cm \: --(2)

 iii) \frac{\theta}{360} \times 2\pi r = 28

 \implies \theta = \frac{28 \times 360}{2 \pi r}

 \implies \theta = \frac{28 \times 360}{2\pi\times 6 }

 \implies \theta = \frac{28 \times 30}{\pi } \: --(3)

 Now, \red{Area \: of \: a \: sector }

 =\frac{\theta }{360} \pi r^{2}

 = \frac{\frac{28 \times 30}{\pi }}{360} \times 36 \pi

 = 28 \times 3

 = 84 \:cm^{2}

Therefore.,

  \red{Area \: of \: a \: sector } \green { =84 \:cm^{2}}

••♪

Answered by nayanapartil4565
1

poco phone le le beta . pubg khele

Similar questions