Math, asked by kianabaruah, 2 months ago

The perimeter of the square field is 56m, find the length of each of its side.

Answers

Answered by priyanshuspice007
2

Answer:

14m

Step-by-step explanation:

Perimeter = 4 * side

56m = 4 * side

56/4 = side

14m = side

 PLZ MARK IT BRAINLIST

Answered by BrainlyRish
4

Diagram :

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(4,0){2}{\line(0,1){4}}\multiput(0,0)(0,4){2}{\line(1,0){4}}\put(-0.5,-0.5){\bf D}\put(-0.5,4.2){\bf A}\put(4.2,-0.5){\bf C}\put(4.2,4.2){\bf B}\put(1.5,-0.6){\bf\large x\ m}\put(4.4,2){\bf\large x\ m}\end{picture}

❍ Let's Consider the Length of side of Square Feild be x m .

\dag\frak{\underline {As,\:We\:Know\:that\::} }\:\\\\

\bf{\bigstar \underline { Perimeter _{(Square \:)}= 4 \times a \:units }}\\\\

Where ,

  • a is the Length of Side of Square.

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

:\implies \sf { 56 = 4 \times x }\\\\:\implies \sf{\cancel {\dfrac{56}{4}} = x }\\\\\underline {\boxed{\pink{ \mathrm {  x = 14\: m}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm { \:Hence,\:The\:Length \:of\:side\:of\:Square\:Feild \:is\:\bf{14\: m}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

V E R I F I C A T I O N :

\dag\frak{\underline {As,\:We\:Know\:that\::}} \:\\\\

  • \bf{\bigstar \underline { Perimeter _{(Square \:)}= 4 \times a \:units }}\\\\

Where ,

  • a is the Length of Side of Square.

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

:\implies \sf { 56 = 4 \times 14 }\\\\:\implies \sf{  56 m = 56 m}\\\\

⠀⠀⠀⠀⠀\therefore {\underline {\bf{ Hence, \:Verified \:}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

  • \begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions