Math, asked by mishtychakraborty, 3 months ago

the perimeter of the triangle of an isosceles triangle is 42 cm and its base is (3\2) times each equal sides .find the length of each side of the triangle are of the triangle and height of the triangle?pls give me ans


mishtychakraborty: nahi
muskanthakur2229: Ohk
QueenOfStars: Excuse me guys! Sorry to cut through...but doncha get what I say?! Kindly stop creating a hella menace here!
muskanthakur2229: ohk
muskanthakur2229: They added me not me
muskanthakur2229: so bye
mishtychakraborty: ma brianly delited kar rihi hu bye

Answers

Answered by pandaXop
230

Sides = 12 , 12 , 18

Height = 7.94

Step-by-step explanation:

Given:

  • Perimeter of isosceles triangle is 42 cm.
  • Length of base of triangle is 3/2 times of equal sides.

To Find:

  • Length of each side of triangle and height of triangle.

Solution: Let ABC be a isosceles triangle where measure of each equal sides be x cm.

  • AB = AC = x
  • BC = 3/2 times of x

As we know that

Perimeter of = Sum of all sides

A/q

  • Perimeter (AB + BC + CA) = 42 cm

\implies{\rm } 42 = AB + BC + CA

\implies{\rm } 42 = x + 3x/2 + x

\implies{\rm } 42 = 2x + 3x/2

\implies{\rm } 42 = 4x + 3x/2

\implies{\rm } 42 × 2 = 7x

\implies{\rm } 84/7 = 12 = x

Hence, measure of sides of ∆ABC are ∼

  • AB = AC = 12 cm
  • BC = 3/2 × 12 = 18 cm

___________________

[ Now let's find height of the triangle ]

  • We will use Pythagoras Theorem here.

  • Let height of triangle be AZ i.e (AZ ⟂ BC, so BZ = ZC)

In right angled ∆AZC we have

  • AZ {perpendicular/height}

  • ZC {base} = 1/2 × 18 = 9

  • AC {hypotenuse} = 12 cm

= Perpendicular² + Base²

➼ AC² = AZ² + ZC²

➼ 12² = AZ² + 9²

➼ 144 – 81 = AZ²

➼ √63 = 7.937 = AZ

Hence, height of the triangle is 7.94 cm.

Attachments:

muskanthakur2229: hloo
Anonymous: namaste
Shahmihir049: great ans sir
captverma: awesome answer..
angelgirlnew: nice answer
yaduvanshigirl23: I love you Ryzen
yaduvanshigirl23: I Miss You Ryzn
Answered by ravitavisen
67

Let  \: equal  \: sides \:  be \:  x</p><p>unequal  \: side = 3x/2</p><p></p><p>now \:  given</p><p>\begin{gathered}x + x + \frac{3x}{2} = 42 \\ = &gt; \frac{2x}{2} + \frac{2x}{2} + \frac{ 3x}{2} = 42 \\ = &gt; \frac{7x}{2} = 42 \\ x = 42 \times \frac{2}{7} \\ x = 12\end{gathered}x+x+23x=42=&gt;22x+22x+23x=42=&gt;27x=42x=42×72x=12</p><p>Now  \: equal \:  sides  \: are 12</p><p>so \:  unequal \:  side = 3/2 × 12</p><p>=&gt; 3 × 6</p><p>= 18</p><p></p><p></p><p></p><p>For  \: finding  \: Height \:  drop \:  a  \: perpendicular. \: </p><p>The  \: perpendicular  \: will \:  cut \:  the  \: base \:  18 cm \:  into  \: half  \: that \:  is \:  9cm</p><p></p><p>Now \:  by \:  Pythagoras \:  theorem</p><p></p><p>Height² + 9² = 12² (since 12 becomes  \: hypotenuse \:  of  \: the  \: triangle \:  formed \:  by \:  perpendicular)</p><p></p><p>height² = 12² - 9²</p><p>height ² = 144 - 81</p><p>height² = 63</p><p>height = √63</p><p>height = 7.93</p><p>


vinshultyagi: copy paste(+_+)(+_+)(¯―¯٥)
angelgirlnew: nice
Similar questions