Math, asked by ShreyaMalik10, 1 month ago

The perimeter of the triangular field is 135cm while the sides of the perimeter are in ratio 25:17:12, find the area of the triangular field.(Find area using herons formula)​

Answers

Answered by TheProphet
95

Solution :

Given :

  • The sides of the perimeter are in ratio 25:17:12
  • The perimeter of the triangular field = 135cm

Explanation :

Let the ratio be x

As we know that formula of the perimeter of triangle :

  • Side + Side + Side

A/q

➝ 25x + 17x + 12x = 135

➝ 54x = 135

➝ x = 135/54

➝ x = 2.5 cm

So,

  • 1st side of ∆ = 25x = 25 × 2.5cm = 62.5 cm
  • 2nd side of ∆ = 17x = 17 × 2.5cm = 42.5cm
  • 3rd side of ∆ = 12x = 12 × 2.5cm = 30cm

Now,

Using Herons Formula :

Semi perimeter = Side + Side + Side/2

Semi perimeter = 62.5 + 42.5 + 30/2

Semi perimeter = 135/2

Semi perimeter = 67.5 cm

&

Area of triangle = √s(s-a)(s-b)(s-c)

Area of ∆ = √67.5(67.5 - 62.5)(67.5 - 42.5)(67.5 - 30)

Area of ∆ = √67.5(5)(25)(37.5)

Area of ∆ = √326406.25

Area of ∆ = 562.5cm²

Thus,

The are of triangular field will be 562.5cm² .

Answered by MяMαgıcıαη
143

\red{\bigstar} G I V E N

\:

  • The perimeter of the triangular field is 135 cm

  • The ratio of sides of triangular field is 25:17:12

\:

\blue{\bigstar} T OF I N D

\:

  • Area of the triangular field ?

\:

\purple{\bigstar} S O L U T I O N

\:

  • Let sides of the triangular field be 25x, 17x, 12x

\:

\quad\odot\:\underline{\boxed{\sf{Perimeter_{(triangular\:field)} = Sum\:of\:all\:sides\:of\:triangular\:field}}}

\:

Putting all known values ::

\:

\sf \quad \dashrightarrow\quad 135 = 25x + 17x + 12x

\\ \sf \quad \dashrightarrow\quad 54x = 135

\\ \sf \quad \dashrightarrow\quad x = {\cancel{\dfrac{135}{54}}}

\\ \sf \quad \dashrightarrow\quad \pink{x = 2.5\:cm}

\:

\green{\bigstar} H E N C E

\:

Sides of triangular field ::

\:

  • 1st side = 25x = 25 × 2.5 = 62.5 cm

  • 2nd side = 17x = 17 × 2.5 = 42.5 cm

  • 3rd side = 12x = 12 × 2.5 = 30 cm

\:

We know that ::

\:

\quad\odot\:\underline{\boxed{\sf{Semi\:Perimeter_{(triangular\:field)}\:(s) = \dfrac{Perimeter_{(triangular\:field)}}{2}}}}

\:

Putting all known values ::

\:

\sf \quad \dashrightarrow\quad Semi\:Perimeter_{(triangular\:field)}\:(s) = \dfrac{135}{2}

\:

After cancelling 135 with 2, we get ::

\:

\sf \quad \dashrightarrow\quad\pink{Semi\:Perimeter_{(triangular\:field)}\:(s) = 67.5\:cm}

\:

Now, finding area of triangular field ::

\:

Using heron's formula ::

\:

\quad\odot\:\underline{\boxed{\sf{Area_{(triangular\:field)} = \sqrt{s\:(s - a)\:(s - b)\:(s - c)}}}}

\:

  • Where a, b, and c are sides of triangular field.

\:

Putting all known values ::

\:

\sf \quad \dashrightarrow\quad Area_{(triangular\:field)} = \sqrt{67.5\:(67.5 - 62.5)\:(67.5 - 42.5)\:(67.5 - 30)}

\\ \sf \quad \dashrightarrow\quad Area_{(triangular\:field)} = \sqrt{67.5\:\times\:5\:\times\:25\:\times\:37.5}

\\ \sf \quad \dashrightarrow\quad Area_{(triangular\:field)} = \sqrt{316406.25}

\\ \sf \quad \dashrightarrow\quad \pink{Area_{(triangular\:field)} = 562.5\:cm^2}

\:

\therefore\:{\underline{\sf{Hence,\:area\:of\:triangular\:field\:is\:\bf{562.5\:cm^2}}}}

\:

\orange{\bigstar} N O T E

\:

  • Dear user if you uses app (brainly), please swipe left to see the full answer.

  • If you uses web (brainly.in), then don't worry answer will be correctly displayed to you.

\:

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions