the perimeter of the two circular ends of the frustum of a cone are 48 cm and 36 CM if the height of the frustum is 11 cm find its volume and the csa
Answers
Answered by
57
Let the radius, r1 and radius, r2 be the radii of the circular ends of the frustum and h be its height.
perimeter = 36 cm (given)
2 π r1=36
r1=36/2π
r1=18/π
perimeter=48 cm
2 π r2=48
r2= 24/π
Volume of Frustum (V)= 1/3 π {(r1)²+ (r2)² + (r1r2)} h
V= 1/3 x π x h {(18/π)²+(24/π)²+(18/π x 24/π)}
V= 1/3 x π x 11 {324/π²+576/π²+432/π²}
V= 1/3 x π x 11x 1/π² (324+576+432)
V= 1/3 x π x 11x 1/π² (1332)
V= 11/3x 1/π (1332)
V= 11/3 x 7/22 (1332)
V= (11 x 7× 1332)/ (22 ×3)
V= 7 x 222
V= 1554 cm³
Hence, the volume of frustum is 154 cm³
csa =22/7×11(36/2×22/7+18/22/7)
=396 cm.
HOPE THIS WILL HELP YOU...
perimeter = 36 cm (given)
2 π r1=36
r1=36/2π
r1=18/π
perimeter=48 cm
2 π r2=48
r2= 24/π
Volume of Frustum (V)= 1/3 π {(r1)²+ (r2)² + (r1r2)} h
V= 1/3 x π x h {(18/π)²+(24/π)²+(18/π x 24/π)}
V= 1/3 x π x 11 {324/π²+576/π²+432/π²}
V= 1/3 x π x 11x 1/π² (324+576+432)
V= 1/3 x π x 11x 1/π² (1332)
V= 11/3x 1/π (1332)
V= 11/3 x 7/22 (1332)
V= (11 x 7× 1332)/ (22 ×3)
V= 7 x 222
V= 1554 cm³
Hence, the volume of frustum is 154 cm³
csa =22/7×11(36/2×22/7+18/22/7)
=396 cm.
HOPE THIS WILL HELP YOU...
Answered by
6
HOPE IT HELPS YOU......
Attachments:
Similar questions