Math, asked by 6304876768, 1 day ago

the perimeter of top of rectangular table is 28m.where as its area 48m².what length of diagonal?1) p=50m,area=200, length of diagonal? D=?

Answers

Answered by pattnaikkunal66
1

Answer:

Solution−

Given function is

\rm :\longmapsto\:f(x) = {sin}^{ - 1}\bigg[\dfrac{1 + {x}^{2} }{2x} \bigg]:⟼f(x)=sin

−1

[

2x

1+x

2

]

We know,

\boxed{\tt{ Domain \: of \: {sin}^{ - 1}x \: is \: x \: \in \: [ - 1,1] \: }}

Domainofsin

−1

xisx∈[−1,1]

So, using this

\rm :\longmapsto\: - 1 \leqslant \dfrac{1 + {x}^{2} }{2x} \leqslant 1:⟼−1⩽

2x

1+x

2

⩽1

We know,

\boxed{\tt{ - y \leqslant x \leqslant y\rm \implies\: |x| \leqslant y \: }}

−y⩽x⩽y⟹∣x∣⩽y

So, using this

\rm \implies\:\bigg |\dfrac{1 + {x}^{2} }{2x} \bigg| \leqslant 1⟹

2x

1+x

2

⩽1

\rm \implies\:\dfrac{1 + {x}^{2} }{2 |x| } \leqslant 1⟹

2∣x∣

1+x

2

⩽1

\rm \implies\:\dfrac{2 |x| }{1 + {x}^{2} } \geqslant 1⟹

1+x

2

2∣x∣

⩾1

\rm \implies\:1 + {x}^{2} \leqslant 2 |x|⟹1+x

2

⩽2∣x∣

\rm \implies\:1 + {x}^{2} - 2 |x| \leqslant 0⟹1+x

2

−2∣x∣⩽0

\rm \implies\: { |x| }^{2} - 2 |x| + 1\leqslant 0⟹∣x∣

2

−2∣x∣+1⩽0

\rm \implies\: {( |x| - 1) }^{2} \leqslant 0⟹(∣x∣−1)

2

⩽0

As square of number can never be negative.

\rm \implies\: {( |x| - 1) }^{2} = 0⟹(∣x∣−1)

2

=0

\rm \implies\: {|x| - 1 } = 0⟹∣x∣−1=0

\rm \implies\: {|x|} = 1⟹∣x∣=1

\bf\implies \:x = 1 \: \: or \: \: - 1⟹x=1or−1

Hence,

\boxed{\tt{ Domain \: of \: f(x) = {sin}^{ - 1}\bigg[\dfrac{1 + {x}^{2} }{2x} \bigg] \: is \: \{ - 1, \: 1 \} \: }}

Domainoff(x)=sin

−1

[

2x

1+x

2

]is{−1,1}

Answered by vanshikachauhan821
2

Answer:

length of diagonal =10m

Similar questions