Math, asked by xxsanshkiritixx, 1 day ago

the perimeter of triangle is 50 cm.one side of triangle is 4 cm longer than the smaller side and the third side is 6 cm less than twice the smaller side. find the areas of triangle.​

Answers

Answered by Anonymous
3

Answer:

Let the smallest side of the triangle be x cm long

So, second side =(x+4)cm

and third side =(2x−6)cm

Given, perimeter =50cm

Therefore, x+(x+4)+(2x−6)=50

⇒4x=52

⇒x=13cm

So, first side of the triangle is 13cm, second side be 17cm and third side is 20cm.

Now, semi-perimeter of the triangle

 \frac{13 + 17 + 20}{2}

=25cm

Therefore, area of Δ=

 \sqrt{s(s - a)(s - b)(s - c)}

 =  \sqrt{25(25 - 12)(25 - 17)(25 - 20)}

 =  \sqrt{25 \times 12 \times 8 \times 5}

 = 20 \sqrt{30} cm {}^{2}

Similar questions
Physics, 13 hours ago