Math, asked by rajeshwarivijay9068, 11 months ago

The perimeter of two similar triangle ∆ ABC and∆ pqr are 49cm and 56 CM respectively, than the ratio of areas of two triangles

Answers

Answered by vpasad14
2

Answer:

The answer will be 7:8

Step-by-step explanation:

Area of ABC/Area of PQR=49/56=7:8

Answered by eudora
2

Answer:

Ratio of areas = 49 : 64

Step-by-step explanation:

The perimeter of triangle ABC = 49 cm

The perimeter of triangle PQR = 56 cm

Scale factor = \frac{\text{perimeter of traiangle ABC}}{\text{perimeter of triangle PQR}}

= \frac{49}{56}

The ratio of perimeter of two triangles = \frac{7}{8}

The Area ratio  = scale factor²

= (\frac{7}{8})^{2}

(\frac{7\times 7}{8\times 8} )=\frac{49}{64}

The ratio of areas of two triangles = \frac{49}{64}

Ratio of areas \frac{49}{64}

Learn more :

ratio of the areas of two similar triangles

https://brainly.in/question/195212

Similar questions