Math, asked by Co3o4nathivangelra, 1 year ago

The perimeters of the ends of the frustum of a cone are 207.24 cm and 169.56 cm. If the height of the frustum be 8 cm, find the whole surface area of the frustum. (Use = 3.14)

Answers

Answered by 140536
0
/////////////////////////
see photos attached
Attachments:
Answered by wifilethbridge
2

Answer:

7592.52 cm^2

Step-by-step explanation:

Circumference of one end of frustum = 2 \pi r

So, 2 \pi r=207.24

2 \times 3.14 \times r=207.24

 r=\frac{207.24}{2 \times 3.14}

 r=33

So, the radius of one end is 33 cm

Circumference of other end of frustum = 2 \pi r

So, 2 \pi r=169.56

2 \times 3.14 \times r=169.56

 r=\frac{169.56}{2 \times 3.14}

 r=27

So, the radius of other end is 33 cm

Height of frustum = 8 cm

Total surface area of frustum = \pi (r+R)\sqrt{(R-r)^2+h^2}+\pi r^2 +\pi R^2

                                                = 3.14 \times (27+33)\sqrt{(33-27)^2+8^2}+3.14 \times 27^2 +3.14 \times  33^2

                                                = 7592.52 cm^2

Hence  the whole surface area of the frustum is  7592.52 cm^2

Similar questions