The period of 2sin2x-5cos2x/7cosx-8sinx
Answers
Answered by
2
Let f(x)=2sin2x−5cosx7cosx−8sinxf(x)=2sin2x−5cosx7cosx−8sinx
Property of periodic function of period T.
f(x+T)=f(x)f(x+T)=f(x)
⇒sinx,cosx⇒sinx,cosx are periodic functions of period 2π2π
by putting T=2πT=2π
We conclude that,
2sin2(x+2π)−5cos(x+2π)7cos(x+2π)−8sin(x+2π)=2sin2x−5cosx7cosx−8sinx2sin2(x+2π)−5cos(x+2π)7cos(x+2π)−8sin(x+2π)=2sin2x−5cosx7cosx−8sinx
2sin2x−5cosx7cos(x)−8sinx=f(x)2sin2x−5cosx7cos(x)−8sinx=f(x)
So, that period of f(x)is2π
Answered by
3
Similar questions