Physics, asked by Omsak8273, 1 month ago

The period of a pendulum T depends on the mass of bob M length of the trends L and the acceleration due to gravity G use period of dimensions to find an expression for T

Answers

Answered by Anonymous
28

Answer:

Given;

\longrightarrow \: \sf T\propto [M]^a [L]^b [g]^c\\

Adding k as dimensionaless constant we have :

\longrightarrow \: \sf T = k [M]^a [L]^b [g]^c

\footnotesize\dag \: \bf{Dimensions \: of \: Time \: Period \: (T) = [M^0 L^0T ^{1} ]} \\

\footnotesize\dag\:\bf{Dimensions \: of \: mass \: (M) = [M^1 L^0 T^0]} \\

\footnotesize\dag\: \bf Dimensions \: of \: length \: (L) = [M^0L^1T^0]</p><p></p><p>\footnotesize\dag\: \bf Dimensions \: of \: Acceleration \: due \: gravity \: (g) = [M^0L^1T^{-2}] \\

\longrightarrow \: \sf [M^0L^0T^1] = [M^1 L^0 T^0]^a [M^0L^1T^0]^b [M^0L^1 T^{-2}]^c \\

\longrightarrow \: \sf [M^0L^0T^1] = [M]^a[L]^{b+ c} [ T]^{ - 2c }\\

On comparing the powers of LHS and RHS we get:

\dashrightarrow\sf a = 0 \\

\dashrightarrow\sf b + c= 0 \\

\dashrightarrow\sf b= - c \qquad \: ...(i)

\dashrightarrow\sf -2c= 1 \\\dashrightarrow\sf c= \dfrac{1}{- 2} \qquad \: ...(ii)\\

Substituting the value of c from eqⁿ (ii) to eqⁿ (i) we get :

\dashrightarrow\sf b = - \bigg(\dfrac{1}{-2} \bigg) \\

\dashrightarrow\sf b = \dfrac{1}{2}\longrightarrow \: \sf T = k [M]^0 [L]^{ \frac{1}{2} } [g]^{ \frac{1}{ - 2} } \\

\longrightarrow \: \sf T = k [L]^{ \frac{1}{2} } [g]^{ \frac{1}{ - 2}} \\

\longrightarrow \: \sf T = k \dfrac{[L]^{ \frac{1}{2} } }{[g]^{ \frac{1}{2}}} \\

\longrightarrow \: \sf T = k \dfrac{\sqrt{[L] }}{\sqrt{[g]}} \\

\longrightarrow \: \sf T = k \sqrt{ \frac{L}{g} } \\

Experimentally we know that the value of k is 2π, Hence :

\longrightarrow \: \gray{\underline{ \boxed{\orange{\rm T = 2\pi \sqrt{\frac{L}{g}}}}}}\\


EliteSoul: Great :D
Anonymous: Thank you :O
Similar questions