Math, asked by bsridevi1981, 8 months ago

The period of cos x sin (pi/4-x) is

Answers

Answered by bhavikapanigrahi
11

Answer:

π

Step-by-step explanation:

py

Answered by hukam0685
13

Step-by-step explanation:

Given that: The period of cos x sin (pi/4-x) is?

Solution: To find the period of given function

cos \: x \: sin \big( \frac{\pi}{4}  - x\big) \\

First open sin(π/4-x) with the formula sin(A-B)

sin(A-B) = sin \: A \: cos \: B - cos \: A \: sin \: B \\  \\ sin \big( \frac{\pi}{4}  - x \big) = sin \:  \frac{\pi}{4}  \: cos \: x - cos \:  \frac{\pi}{4}  \: sin \: x \\  \\  \because \: sin \:  \frac{\pi}{4} = cos \:  \frac{\pi}{4} =  \frac{1}{ \sqrt{2} }  \\  \\ sin\big( \frac{\pi}{4}  - x \big)=  \frac{1}{ \sqrt{2} }  \: cos \: x - \frac{1}{ \sqrt{2} }  \: sin \: x \\  \\ =  \frac{1}{ \sqrt{2} } (cos \: x - sin \: x) \\  \\

Now,multiply cos x

 cos \: x \: sin \big( \frac{\pi}{4}  - x\big)=  \frac{1}{ \sqrt{2} } \Big( {cos}^{2}x - sin \: x \: cos \: x\Big) \\  \\

Multiply and divide by 2

 \frac{1}{ \sqrt{2} }\Bigg ( \frac{1}{2}\Big (2 {cos}^{2} x - 2sin \: x \: cos \: x\Big)\Bigg) \\  \\  \frac{1}{2 \sqrt{2} } (1 + cos \: 2x - sin \: 2x) \\  \\ cos \: x \: sin \big( \frac{\pi}{4}  - x\big)=  \frac{1}{2 \sqrt{2} }  +  \frac{cos \: 2x}{2 \sqrt{2} }  -  \frac{sin \: 2x}{2 \sqrt{2} }  \\  \\

We know that period of cos x=2π

and sin x= 2π

Thus

Period of cos 2x= 2π/2= π

Period of sin 2x= 2π/2= π

Period of complete given function is LCM of both cos 2x and sin2x

Thus , LCM(π,π) = π

Period of cos x sin (pi/4-x) is π.

Hope it helps you.

Similar questions