Physics, asked by nagendraprincep59kb1, 1 year ago

the period of oscillation of mass m suspended by an ideal spring is 2s. if an additional mass of 2kg be suspended the time period is increased by 1s. find the value of m.

Answers

Answered by bestwriters
0

The value of m is 1.6 kg.

Given:

Period of oscillation of m = 2 s

Additional mass = 2 kg

Period of oscillation of additional mass = 2 s + 1 s = 3 s

To find:

m = ?

Formula used:

Time period of oscillation:

\bold{T=2\pi \sqrt{\frac{m}{k}}}

Where,

k = Force constant

Solution:

Period of oscillation of m:

\bold{T=2\pi \sqrt{\frac{m}{k}}}

\bold{2=2\pi \sqrt{\frac{m}{k}}\longrightarrow(1)}

Period of oscillation of additional mass:

\bold{3=2\pi \sqrt{\frac{(m+2)}{k}}\longrightarrow(2)}

On dividing equation (1) by (2), we get,

\bold{\frac{2}{3}=\frac{2\pi \sqrt{\frac{m}{k}}}{2\pi \sqrt{\frac{(m+2)}{k}}}}

\bold{\frac{2}{3}=\sqrt{\frac{\frac{m}{k}}{\frac{(m+2)}{k}}}}

\bold{\frac{4}{9}=\frac{m\times k}{(m+2)\times k}}

\bold{\frac{4}{9}=\frac{m}{m+2}}

\bold{4m+8=9m}

\bold{5m=8}

\bold{m=\frac{8}{5}}

\bold{\therefore m = 1.6 \ kg}

Similar questions